|    |  | interface-statesTo specify additional charges at material interfaces, one has to specify- material interfaces
 - interface state properties.
 See also documentation under keyword
  
$material-interfaces. !-------------------------------------------------------------!for$interface-states                                   
optional  !
 state-number                      
integer         
required  !
 state-type                        
character       required  ! 
fixed-charge, trap, electrolyte, 
k.p
 interface-density                 
double         
required  !
 number-of-energy-levels           
integer         optional  !
 trapforenergy-levels-relative            
double_array    
optional  !
 trapfordegeneracy-of-energy-levels       
integer_array   
optional  !
 trapfortransition-times-cb-to-levels     
double_array    
optional  !
 trapfortransition-times-levels-to-vb     
double_array    
optional  !
 trap!
 number-of-parameters               
integer         optional  !
 parameters                         
double_array    optional  !
 
  adsorption-constant                
double          
optional  ! for 
electrolytefordissociation-constant              
double          
optional  !
 
electrolytefor!
 pressure                           
double          optional  !
 gasforsurface-phonon-frequencies         double_array    optional  !
 gas (1st = weakly, 2nd 
= strongly chemisorbed surface state)foraccomodation-coefficients          double_array    optional  !
 gas (1st = weakly, 2nd 
= strongly chemisorbed surface state)forenergy-levels-chemisorbed-states   double_array    
optional  !
 gas (1st = weakly, 2nd 
= strongly chemisorbed surface state)forfree-molecule-energy               
double          optional  !
 gasformolecule-mass                      
double          optional  !
 gas!
 
$end_interface-states                               optional 
!!-------------------------------------------------------------!
   Syntaxstate-number                  =
1Refers to=
2
 =
integer
 
 state-numbers specified in 
$material-interfaces.
   state-type                    =
fixed-chargeThe trap model is not fully tested yet. We don't have any tutorials for 
it.=
trap           
!
=
electrolyte
 = gas
 
 
  fixed-charge
 
 interface-density         = 
  -2.2d13   ! -2.2 x 1013
[|e|/cm2]interface density of
 
fixed-charge 
in units of [e/cm2]
trapinterface density of impurity type in units of
 interface-density        
  = 1.0d15    ! 1.0 x 1015
[1/cm2]
 
 [1/cm2]number of energy levels of this impurity
 number-of-energy-levels   =
1
 
 
 energy-levels-relative    = 
0.3d0 !
in units of [eV]
(can be an array of energy levels)energy levels in [eV] relative to 'nearest' 
band edge (n-type
->conduction band, else valence band)
 
 degeneracy-of-energy-levels = 
2 !
for donorsfor acceptors= 4 !
 !
can be an array of degeneracies (one for each energy level)degeneracy of energy levels
 
 transition-times-cb-to-levels = 
 ! can be an array of transition timesrequired in case of
 
trap: times from conduction band to discrete 
levels
 can be an array of transition timestransition-times-levels-to-vb = 
 !
required in case of
 
trap: times from discrete levels to valence 
bands
 Not included yet:
 -
  relevant_bandedgeV = 1: Ionization energy relative to band edge 
of left octant-
  relevant_bandedgeV = 2: Ionization energy relative to band edge 
of right octant
electrolyte
 Definition of electrolyte: An aqueous solution containing dissolved 
ions that result from the dissociation of salts.
 The surface ionization that occurs at the oxide/electrolyte interface yields 
  an interfacial sheet charge density.
 (Note: The pH value is specified in the keyword
 
	$electrolyte.)
 There are two ways how the electrolyte influences the calculations:
 - oxide/electrolyte interface states:
              
  $interface-states- Poisson-Boltzmann equation in electrolyte region:
 
  $electrolyte$electrolyte-ion-content
 
 !--------------------------------------------------------------------!! Ga(x)O(y) behaves similarly to Al2O3 surface: 8.0d14 = Al2O3 value !
 !--------------------------------------------------------------------!
 ! Amphoteric surface
 !--------------------------------------------------------------------!
 ! S: oxide molecular site with a bonded hydroxyl group OH
 !
 ! Two surface reactions:
 !  SOH_2^+ <=> SOH  + H^+ : dissociation constant K_1 = 
  adsorption-constant
 !  SOH     <=> SO^- + H^+ : dissociation constant K_2 
  = dissociation-constant
 !
 ! SOH    : neutral
 ! SOH_2^+: positive
 ! SO^-   : negative
 !
 ! total density of surface sites = total number of surface sites per unit area 
  = n_s
 ! n_s = nu_'SOH' + nu_'SOH_2^+' + nu_'SO^-'
 !--------------------------------------------------------------------!
 
Electrolyte: Site-binding model (interface charges)
 
   => semiconductor/electrolyte or oxide/electrolyte interface
   => Amphoteric behavior of surface: Adsorption or 
  dissociation of hydrogen ions at hydroxyl (OH) groups.These two 
  reactions are characterized by two dissociation constants K1 and K2.
      Adsorption and dissociation at this interface leads to an interface charge.
 
  
 
 interface density of surface 
  sites Ns in units ofinterface-density        
  = 8.0d14   ! 8.0 x 1014
  [1/cm2]
 
 [1/cm2]total density of surface sites, e.g. 'surface hydroxyl groups
' 
  (S-OH)These refer to the chemical reactions at the surface of the 
semiconductor (or oxide) that are due to the presence of the electrolyte.
 
 adsorption-constant       =
  1.0d-8  ! K1 = adsorption   
  constant
 dissociation-constant     = 
  1.0d-6  
  ! K2 = dissociation constant
 
These constants 
  are material parameters of the semiconductor (or oxide).
 In units of
  [-].More information on the electrolyte liquid and the Poisson-Boltzmann equation:
 
 
  $electrolyte$electrolyte-ion-content
 
 The following figure shows the relation of the oxide/electrolyte interface 
charge density sigmaadsorbed divided by the maximum possible 
oxide/electrolyte interface charge density e Ns for different pH 
values. Here, the electrostatic potential is taken to be fixed at phi = 0 V. The 
model used here applies to amphoteric surfaces. For details confer Fig. 2.2.3 
and the related description in the diploma 
thesis of Michael Bayer, TU Munich (2004).
 
 The figure shows the results for two different combinations of absorption and 
dissociation constants.    adsorption-constant   = 1d-6    
! K1 = adsorption   
  constantdissociation-constant = 1d-8    ! K2 = dissociation constant
 
 adsorption-constant   = 1d-3    
! K1 = adsorption   
  constant
 dissociation-constant = 1d-9    
! K2 = dissociation constant
 The following figure shows the relation of the oxide/electrolyte interface 
charge density sigmaadsorbed divided by the maximum possible 
oxide/electrolyte interface charge density e Ns for different 
oxide/electrolyte interface potential 
values. Here, the pH value is taken to be fixed at pH = 8. The 
model used here applies to amphoteric surfaces. For details confer Fig. 2.2.4 
and the related description in the diploma 
thesis of Michael Bayer, TU Munich (2004). 
 To create this figure, we applied flow-scheme = 
31.
k.p interface Hamiltonian !---------------------------------------------------------------------------!
 $material-interfaces
 interface-number               
= 1
 apply-between-material-numbers = 1 2
 state-numbers                  
= 1    ! refers to $interface-states  
state-number = 1
 
 interface-number               
= 2
 apply-between-material-numbers = 2 3
 state-numbers                  
= 2    ! refers to $interface-states  
state-number = 1
 $end_material-interfaces
 !---------------------------------------------------------------------------!
 
 !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 !                                  
pi_i  D_S    D_X   D_Z    alpha  
beta1
 !
 ! ## ==> a) Switch on  k.p interface Hamiltonian
 %InterfaceParameters_InAs_GaSb = +1.0  -1.70  
1.17  -1.17  0.2    0.2     
! [eV Angstrom] / [Angstrom] [Livneh2014]
 %InterfaceParameters_GaSb_InAs = -1.0  -1.70  
1.17  -1.17  0.2    0.2     ! [eV 
Angstrom] / [Angstrom] [Livneh2014]
 !
 ! ## ==> b) Switch off k.p interface Hamiltonian
 ! %InterfaceParameters_InAs_GaSb =  0.0   
0.0   0.0    0.0   0.0    0.0
    ! [eV Angstrom] / [Angstrom]
 ! %InterfaceParameters_GaSb_InAs =  0.0   
0.0   0.0    0.0   0.0    0.0     
! [eV Angstrom] / [Angstrom]
 !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
 
!---------------------------------------------------------------------------!! Add k.p interface Hamiltonian, see eq. (2) in
 ! [Livneh2012] Y. Livneh et al., Physical Review B 86, 235311 (2012).
 ! [Livneh2014] Y. Livneh et al., Physical Review B 90, 039903(E) (2014).
 ! pi_i = +1 (  normal interface, i.e. GaSb on InAs interface) or
 ! pi_i = -1 (inverted interface, i.e. InAs on GaSb)
 !---------------------------------------------------------------------------!
 $interface-states
 state-number         =
1                                                   
! InAs/GaSb: pi_i = +1
 state-type           =
k.p
 interface-density    = 0.0                                                 
!
 number-of-parameters = 6
 ! pi_i  D_S    D_X   D_Z    alpha  
beta
 !parameters           =
+1.0  -1.70  1.17  -1.17  0.2    
0.2                
! [eV Angstrom] / [Angstrom] [Livneh2014]
 !parameters           = 
0.0   0.0   0.0    0.0   
0.0    0.0                
! [eV Angstrom] / [Angstrom] (switched off)
 parameters           = %InterfaceParameters_InAs_GaSb
 !
 state-number         =
2                                                   
! GaSb/InSb: pi_i = -1
 state-type           =
k.p
 interface-density    = 0.0                                                 
!
 number-of-parameters = 6
 ! pi_i  D_S    D_X    D_Z   alpha  
beta
 !parameters           =
-1.0  -1.70  1.17  -1.17  0.2    
0.2                
! [eV Angstrom] / [Angstrom] [Livneh2014]
 !parameters           = 
0.0   0.0   0.0    0.0   
0.0    0.0                
! [eV Angstrom] / [Angstrom] (switched off)
 parameters           = %InterfaceParameters_GaSb_InAs
 $end_interface-states !
 !---------------------------------------------------------------------------!
 ! Additional comment:! If %DebugLevel >= 3, information on k.p interface 
parameters is written to .log file.
 ! If %DebugLevel >= 200, the k.p Hamiltonian matrix 
is written out into the debug/ folder.
 ! Note: For schroedinger-kp-discretization = 
box-integration     the imaginary part of the k.p 
Hamiltonian is    zero at k_parallel = 0.
 !                                           
box-integration-XYZ the imaginary part of the k.p 
Hamiltonian is nonzero at k_parallel = 0.
 
 The source code looks as follows:
 !------------------------------------------------------------------------
 ! Add interface Hamiltonian, see eq. (2) in
 ! [Livneh2012] Y. Livneh et al., Physical Review B 86, 235311 (2012).
 ! [Livneh2014] Y. Livneh et al., Physical Review B 90, 039903(E) (2014).
 !
 ! ==> To DO: GENERATE INPUT FILE THAT REPRODUCES FIG. 4 IN [Livneh2012]. 
<==
 !
 !------------------------------------------------------------------------
 IF (kp_InterfaceL) THEN
 Ham_const%matM(1,1) = Ham_const%matM(1,1) + D_S
 Ham_const%matM(2,2) = Ham_const%matM(2,2) + D_S
 Ham_const%matM(3,3) = Ham_const%matM(3,3) + D_X
 Ham_const%matM(4,4) = Ham_const%matM(4,4) + D_X
 Ham_const%matM(5,5) = Ham_const%matM(5,5) + D_Z
 Ham_const%matM(6,6) = Ham_const%matM(6,6) + D_X
 Ham_const%matM(7,7) = Ham_const%matM(7,7) + D_X
 Ham_const%matM(8,8) = Ham_const%matM(8,8) + D_Z
 
 Ham_const%matM(3,4) = Ham_const%matM(3,4) + pi_i * 
alpha
 Ham_const%matM(4,3) = Ham_const%matM(4,3) + pi_i * 
alpha
 Ham_const%matM(6,7) = Ham_const%matM(6,7) + pi_i * 
alpha
 Ham_const%matM(7,6) = Ham_const%matM(7,6) + pi_i * 
alpha
 
 Ham_const%matM(1,5) = Ham_const%matM(1,5) + pi_i * beta
 Ham_const%matM(5,1) = Ham_const%matM(5,1) + pi_i * beta
 Ham_const%matM(2,8) = Ham_const%matM(2,8) + pi_i * beta
 Ham_const%matM(8,2) = Ham_const%matM(8,2) + pi_i * beta
 END IF
 
 
	gas:
 The gas model is based on the so-called Wolkenstein model (Volkenstein) 
	which is a charge transfer model (and which is an improvement with respect 
	to S.R. Morrison's classical "charge transfer model").
 It consists of a weakly and a strongly chemisorbed surface state.
 Related terms: Electroadsorptive effect, Wolkenstein isotherm
 
 For more information on this topic, see for instance:
 
 
 - Advanced Gas Sensing: The Electroadsorptive Effect and 
	Related Techniques
   T. Doll (Ed.)
   Kluwer Academic Publishers, Boston, 2003, ISBN 
	1-4020-7433-6
 
 - Chemisorption effects on the thin-film conductivity
   H. GeistlingerSurface Science 277, 429 (1992)
 
 
 !interface-density                =
	0d0             
	! no gas-interface modelinterface-density                =
1d12            
	! [cm-2] total density of surface 
	sites
 
 !pressure                         =
	50d0          
	 ! [Pa]  50  Pa = 50  
	N/m
2
	(low  O2)pressure                         =
20d3            !
	[Pa]  
	20 kPa = 20 kN/m2 (high O2)
 
 surface-phonon-frequencies       =
1d13   
	1d13    
	! [Hz] v0, v-   1 * 1013 Hz = 1 
	* 1013 1/s(1st = weakly, 2nd = strongly chemisorbed 
	surface state)!
                                                    
	! vibration frequency of the adsorbed particle (typical value: ~1013 
	Hz)
 
 accomodation-coefficients        =
1d0     1d0     ! 
	[] alpha0, alpha-
                                                     
	! (1st = weakly, 2nd = strongly chemisorbed 
	surface state)                                                    
	! alpha = accomodation coefficient
 
 energy-levels-chemisorbed-states =
-3.80d0 -7.90d0 ! 
	Ea0, 
	Ea-  [eV](1st = weakly, 2nd = strongly chemisorbed 
	surface state)!
 
 free-molecule-energy             
	=
-3.60d0         ! 
	[eV] (Comment: Is this property related to 
	electron affinity?)
 
 molecule-mass                    
	=
31.9988d0       ! 
	[u]oxygen atom       O : mass of an atom     
	=      15.9994 u!
oxygen molecule O2: mass of a molecule = 2 * 15.9994 u = 
	31.9988 u!
                                                     
	! 1 [u] = 1 / NA [g] = 1 / (1000 * NA) [kg], 
	where NA is 
	Avogadro's number.
 |