|  electrolyte-ion-contentDefinition of electrolyte: An aqueous solution containing dissolved 
ions that result from the dissociation of salts. The pH value of this solution is related to the concentration of H3O+ 
and OH-ions. There are two ways how the electrolyte influences the calculations:- oxide/electrolyte interface states:
              
$interface-states- Poisson-Boltzmann equation in electrolyte region:
 
$electrolyte
                                       
$electrolyte-ion-content The electrostatic potential distribution in the electrolyte can be finally 
obtained by solving the nonlinear Poisson-Boltzmann equation with appropriate 
boundary conditions. The Poisson-Boltzmann model describes the equilibrium of 
electro-diffusion processes of ions in a solution. There is an exponential 
relationship between the distribution of the charge density and the potential. Note: The material name of the electrolyte region must be identical to 
'Electrolyte':
   $material
    material_name = Electrolyte
 If the electrolyte is present at grid point i, then call 
SUBROUTINE calculate_class_dens_ion to calculate the ion density 
(Poisson-Boltzmann equation).
 - FUNCTION 
density- FUNCTION 
deriv_density
 Electrolyte:1D:Note: The electrolyte region should be placed at the boundary of the 
one-dimensional device, i.e. the device should basically look like this along z-direction:
 metal (=contact) - 
semiconductor heterostructure - oxide - electrolyte - metal (contact=electrode inside the 
electrolyte)
 
 2D:
 Then solve the current in the device for direction perpendicular to z direction, i.e. along x 
and y:
 metal (=contact) - semiconductor heterostructure - (here flows the current, so 
we need two additional contacts in a 2D simulation) - oxide - electrolyte - 
metal (contact=electrode inside the 
electrolyte)
   !----------------------------------------------------!$electrolyte-ion-content                   
optional  !
 ion-number                  
integer       
required  !
 ion-name                   
character  
   optional  !
 ion-valency                 
double        
required  !
 ion-concentration           
double        
required  !
 ion-region                  
double_array  required  !
 $end_electrolyte-ion-content               
optional  !
 !----------------------------------------------------!
   Syntaxion-number        = 
1Numbering must be unique. All ion numbers numbers together must form a dense set= 2
 
1, 2, 3, ..., maxnumber.
   ion-name          =
Na+   !
cation+of NaClanion= Cl-   !
-of NaClcation= Ca2+  !
2+ of CaCl2
                   
= Cl-   !
anion-of CaCl2(optional)
   ion-valency       = 
1d0should be an integer, e.g.= -2d0
 
 ...,-2,-1,0,1,2,...This is the charge of the ion.
(Can be set zero if one wants to deactivate it.)
   ion-concentration = 1.0d-3          ! [M]=[mol/l]ion concentration of this
 ion-number in the electrolyte in units 
of [M] = [mole/liter] = 1d-3 [mol/cm³]
   ion-region        = 
100d0  2000d0  ! [nm]refers to region where the electrolyte has to be applied to, e.g. 
from 100 nm to 2000 nm in 1D (
xmin xmax)
  - 1D simulation: xmin xmax
  - 2D simulation: xmin xmax  ymin ymax3D simulation:-
 xmin xmax  ymin ymax  zmin zmax
     1D Example:
 
 !---------------------------------------------------------------------------!charge of the ion:! The electrolyte (NaCl, Hepes) contains four types of ions:
 !   1) 100 mM singly charged cations (Na^+)
 !   2) 100 mM singly charged anions  (Cl^-)
 !   3)  10 mM doubly charged cations (Hepes solution ^2+)
 !   4)  20 mM singly charged anions  (Hepes solution ^-)
 !---------------------------------------------------------------------------!
 $electrolyte-ion-content
 
 ion-number        =
1
 ion-name          =
Na+            !
Na+
 ion-valency       = 
1d0            !
 Na+Input in units of:ion-concentration = 0.100d0        
!
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
1543d0  9999d0 !
charge of the ion:
 ion-number        =
2
 ion-name          =
Cl-            !
Cl-
 ion-valency       = 
-1d0           !
 Cl-Input in units of:ion-concentration = 0.100d0        
!
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
1543d0  9999d0 !
HEPES buffer
 ion-number        =
3              !
charge of the ion:ion-name          =
Hepes2+        ! Hepes2+
 ion-valency       = 
2d0            !
 Hepes2+Input in units of:ion-concentration = 0.010d0        
!
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
1543d0  9999d0 !
HEPES buffer
 ion-number        =
4              !
charge of the ion:ion-name          =
Hepes-         ! Hepes-
 ion-valency       = 
-1d0           !
 Hepes-Input in units of:ion-concentration = 0.020d0        
!
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
1543d0  9999d0 !
 $end_electrolyte-ion-content
 !---------------------------------------------------------------------------!
   Buffer solutions Note: Instead of specifying the buffer ions explicitly under keyword
$electrolyte-ion-content it is much more 
convenient (and userfriendly) to use the specifer buffer-name =
HEPES (or any other buffer name) in keyword
$electrolyte.By doing so, the concentration of the various buffer ions is calculated 
automatically, taking into account the pH value, the pKa 
value, the number of relevant ions, the ionic strength and the temperature 
dependence in a self-consistent manner.
 The material parameters for the various buffer solutions can be found in the 
database under this keyword:
  
$buffer-solutions.   Limitations:- Currently the ion-region must extend over the whole electrolyte region.
 - Only one electrolyte region is possible
 - Even if no ions are present in the electrolyte (apart from H3O+, OH
 -, 
anion-, cation+), at least one ion species 
has to be specified. But you can specify ion-concentration = 0d0  in this case.- Note that the overall charge in the electrolyte should be zero, i.e. the 
electrolyte should be neutral (electroneutrality requirement).
 Bascially, the salts that are put into the electrolyte are neutral. So 
the sum over all dissociated ions of the salts should also be neutral.
 It could be that the user forgets some of these dissociated ions, 
specifies the valency incorrectly or specifies the concentration incorrectly.
 Luckily, these cases will be checked inside the code.
 
   pH valueNote: The ion concentrations of H3O+ and OH-(and their corresponding anion-and cation+ counterparts) must not be 
specified here.- corresponding anion
 -: conjugate base (Example: HCl + H2O 
<==> H3O+ + Cl-:      
Cl-is the conjugate base)- corresponding cation
 +: conjugate acidThey are inserted automatically inside the code.
 nextnano³ automatically generates the following entries internally for 
the specified pH values:
 (
 i is the total number of ions 
specified in the input file) pH = 7 (neutral) ([H3O+] 
= [OH-] = 1 * 10-7 
M):
   ion-number        =
(i+1)             ! H3O+H3O+ion-name          =
H3O+              !
charge of H3O+:ion-valency       = 1d0 
              !
 ^1+Input in units of:ion-concentration = 1.0d-7            
!
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
(same as 1st ion) !
OH
 ion-number        =
(i+2)             !
-OHion-name          =
OH-               !
-charge of OHion-valency       = 
-1d0              !
-: ^1-Input 
in units of:ion-concentration = 1.0d-7            !
 [M] = [mol/l] = 1d-3 [mol/cm³]refers to region where 
the electrolyte has to be applied toion-region        =
(same as 1st ion) !
 anionion-number        =
(i+3)             !
- (corresponding to H3O+)anionion-name          =
anion-            !
- (corresponding to H3O+)charge of anionion-valency       = 
-1d0              !
-: ^1-No conjugate base present for pH = 7 (neutral, i.e. pure water)ion-concentration = 0d0               !
refers to region where 
the electrolyte has to be applied toion-region        =
(same as 1st ion) !
 cation+ion-number        =
(i+4)             !
 (corresponding to OH-)cation+ion-name          =
cation+           !
 (corresponding to OH-)charge of cation+:ion-valency       = 
+1d0              !
 ^1+No conjugate acid present for pH = 7 (neutral, i.e. pure water)ion-concentration = 0d0               !
refers to region where 
the electrolyte has to be applied toion-region        =
(same as 1st ion) !
 pH = 0 (acid) ([H3O+] 
= 1 M; [OH-] =
1 * 10-14 M):
   ion-number        =
(i+1)             ! H3O+charge of H3O+:ion-valency       = 1d0 
              !
 ^1+Input in units of:ion-concentration = 1.0d0             
!
 [M] = [mol/l] = 1d-3 [mol/cm³]OH...
 
 ion-number        =
(i+2)             !
-charge of OHion-valency       = 
-1d0              !
-: ^1-Input 
in units of:ion-concentration = 1.0d-14           !
 [M] = [mol/l] = 1d-3 [mol/cm³]anion...
 
 ion-number        =
(i+3)             !
- (corresponding to H3O+)charge of anionion-valency       = 
-1d0              !
-: ^1-= 10-pH - 10-pOH = 10-0 - 10-14 = 1ion-concentration = ~1d0              !
cation+...
 
 ion-number        =
(i+4)             !
 (corresponding to OH-)charge of cation+:ion-valency       = 
+1d0              !
 ^1+No conjugate acid present for pH < 7 (i.e. acid)ion-concentration = 0d0               !
...
 pH = 14 (base) ([H3O+] 
=  1 * 10-14 M; [OH-] 
= 1 M):
   ion-number        =
(i+1)             ! H3O+charge of H3O+:ion-valency       = 1d0 
              !
 ^1+Input in units of:ion-concentration = 1.0d-14           
!
 [M] = [mol/l] = 1d-3 [mol/cm³]OH...
 
 ion-number        =
(i+2)             !
-charge of OHion-valency       = 
-1d0              !
-: ^1-Input 
in units of:ion-concentration = 1.0d0             !
 [M] = [mol/l] = 1d-3 [mol/cm³]anion...
 
 ion-number        =
(i+3)             !
- (corresponding to H3O+)charge of anionion-valency       = 
-1d0              !
-: ^1-No conjugate base present for pH > 7 (i.e. base)ion-concentration = 0d0               !
cation+...
 
 ion-number        =
(i+4)             !
 (corresponding to OH-)charge of cation+:ion-valency       = 
+1d0              !
 ^1+= 10-pOH - 10-pH = 10-0 - 10-14 = 1ion-concentration = ~1d0              !
...
 The pH value has to be specified in keyword
$interface-states by the specifier 
pH-value for the state-type = electrolyte.   Extremal pH valuesAt extremal pH values, the following ions are present: pH = 0:  1 mol/l H3O+, ~1 mol/l anion- (conjugate base) (negligible: 1*10-14 mol/l
OH-; 0 mol/l cation+) pH = 14: 1 mol/l OH-, ~1 mol/l cation+ (conjugate 
acid)  (negligible: 1*10-14 mol/l H3O+; 
0 mol/l anion-) This means that these ions will dominate over all other specified ion species 
unless they occur in a comparable concentration. If the density of surface sites is zero ($interface-states, state-type =
electrolyte, interface-density = 
  0d0) and if no other ions are 
specified then the results for very extreme pH values should be 
identical:Result(
pH=0 ) = Result( pH=14 )
  => Strong acid and strong base 
should lead to identical resultsbecause nextnano³ does not distinguish between H3O+ 
and cation+. It also does not distinguish between OH
 -and anion-.     More information on electrolyte:
$electrolyteMore information on electrolyte interface charges (site-binding model):
 
$interface-states |