|    |  |  ElectrolyteDefinition of electrolyte: An aqueous solution containing dissolved 
ions that result from the dissociation of salts. !-------------------------------------------------------------!$electrolyte                                        
optional  !
 electrolyte-number                
integer         required  !
 electrolyte-region                 
double_array   
required  !
  destination-directory              character       required  
!pH-value                           
double         
required  !
 
 pH-value-sweep-active              character       optional  !pH-value-sweep-step-size           double          optional  !
 pH-value-sweep-number-of-steps     integer         optional  !
 electrolyte-equation               
character      
required  !
 extended-Poisson-Boltzmann         
character      
optional  !
 shift-PMF                          double          optional  !
 shift-water-density                double          optional  !
 read-in-water-density-from-file   
 character      
optional  !
 filename-water-density   
          character      
optional  !
 local-dielectric-constant          character       
optional  !
 local-dielectric-constant-min-max  
double_array   
optional  !
 include-buffer                     character       required  !
 buffer-name                        character       optional  !
 buffer-concentration               double          optional  !
 pKa-temperature-dependence         character       optional  !
 pKa-ionic-strength-dependence      character       optional  !
 pKa-spatial-dependence             character       optional  !
 $end_electrolyte                                     optional 
!
 !-------------------------------------------------------------!
   Syntax
	electrolyte-number    =
	1So far 
	only one electrolyte region is implemented.=
	2
 =
	integer
 
electrolyte-region    = 
	100d0  2000d0  ! [nm]refers to region where the electrolyte/buffer has to be applied to, e.g. 
from 100 nm to 2000 nm in 1D (
xmin xmax)
  - 1D simulation: xmin xmax
  - 2D simulation: xmin xmax  ymin ymax3D simulation:-
 xmin xmax  ymin ymax  zmin zmaxdestination-directory = electrolyte/Name of directory to which the files should be written. Must exist and 
  directory name has to include the slash (\ for DOS and / for UNIX).
pH-value              =
	 0d0    ! pH = -lg(H+
	concentration) = 11 -> concentration in [M]=[mol/l]
  	(strong 
	acid)=
	 1d0    !
(neutral)=
	 ...    !
 =
	 6.5d0  !
 =
	 7d0    !
(strong base)=
	 ...    !
 =
	14d0    !
Note: The negative decadic logarithm of the concentration of hydrogen ions 
  is called the pH value.
The pH value must be within the range
  0 <= pH <= 14.The concentration of the ions in the electrolyte is 
  relevant for the site-binding model and is given in units of
  [M]=[mol/l].Note: The pH value that is specified here generates automatically the 
  relevant concentrations of H3O+ and OH
 -ions (and their corresponding anion and cation counterparts, i.e. conjugate 
  base and conjugate acid). For details, see
	$electrolyte-ion-content.
 pH-value-sweep-active          
	= no 
   !  (default) The Poisson-Boltzmann equation is solved only
                                         
	!        for the pH value specified in pH-value.Loop over pH values.
 !
pH-value-sweep-active          
	=
yes   
	!The Poisson-Boltzmann equation is solved several times, starting
                                         
	!        from the pH value specified in pH-value, thenit is increased by
	this step size (pH' = pH + 0.5)pH-value-sweep-step-size       =
	0.5d0 !
'number-of-steps' times (in this example 14 
	sweeps).pH-value-sweep-number-of-steps = 14    
	!
                                        
	! For each pH value the relevant output is written out,
                                         
	! labelled by 'ind000.dat', 'ind001.dat', 'ind002.dat', 
	...
                                         
	! Note: The total range of allowed sweeps must be within the range 0 
	< pH < 14.
electrolyte-equation =
  	Poisson-Boltzmann            
  ! Poisson-Boltzmann equation
                      
  = Debye-Hueckel-approximation  ! Debye-Hückel approximation
                      
  = Stern-Grahame-model       
	  ! Stern-Grahame model (not implemented yet)The Debye-Hückel (DH) approximation in the
	linearized form of the nonlinear Poisson-Boltzmann equation and is valid only for
 zi e (phi(x) - UG) < kBT, i.e. at 
  room temperature and for UG = 0 V,  zi e phi(x) 
  should be smaller than 25 meV.
 
 - i  :  ion-number  
	(For details, see $electrolyte-ion-content.)zi:-
  ion-valency (For details, see
	$electrolyte-ion-content.)e:     charge of electron-
 - phi:   electrostatic potential in [V]
 - UG:   applied gate voltage   in [V]The Debye-Hückel approximation yields a limiting result to which general 
  solutions must converge for small potentials. Particularly in the limit of 
  zero ion concentrations the solution of DH becomes exact.
 For more information on these three models, have a look into the diploma 
  theses of Michael Bayer and Christian Uhl, or the PhD thesis of Sebastian 
  Luber.
 
extended-Poisson-Boltzmann = no  
	! (default)potentials of mean force= PMF !
should be used together withPMF
 hydrophilic or hydrophobic  local dielectric 
	constant, see next specifier.See also this tutorial for more information:
Extended Poisson-Boltzmann equation:
	Potentials of mean force (PMF)==>
   Hydrophobic/hydrophilic (i.e. nonpolar/polar) solid/liquid interfaces
	
 local-dielectric-constant          
	= constant-water-density  ! (default)nonpolar surface (i.e. repelling  water)= hydrophobic             
	!
polar surface (i.e. attracting water)= hydrophilic             
	!
nonpolar surface (i.e. repelling  water)= hydrophobic-SAM         
	!
polar surface (i.e. attracting water)= hydrophilic-SAM         
	!
epsmin  epsmax   (static 
	dielectric constant)local-dielectric-constant-min-max  = 1d0   
	78d0              
	!
The local dielectric constant enters the Poisson-Boltzmann equation.
 
 By default, inside the electrolyte the water density is assumed to be 
	constant (
 constant-water-density).Alternatively, at the solid/electrolyte interface the water density can be 
	assumed to vary locally:
 
 
	- hydrophobic for a nonpolar surface 
	(i.e. repelling  water)for a      
	polar surface (i.e. attracting water)- hydrophilic
 Instead of assuming a constant value of approx. eps = ~ 80 for the 
	static dielectric constant of water,
 one can assume a local dielectric constant eps(z) 
of water based on eq. (2) of the following paper:
 
 Reversed Anionic Hofmeister Series: The Interplay of 
Surface Charge and Surface Polarity
 N. Schwierz, D. Horinek, R. R. Netz
 Langmuir
	26, 7370 (2010)
 
 This will lead to a spatial variation of the dielectric constant of the 
	electrolyte according to the following equation:
 
 eps(z) = epsmin + ( epsmax
 -epsmin 
	) rho(z) / rho0
 epsmax is the dielectric constant of water (epsmax = 
	78)
 epsmin is the dielectric constant of e.g. vacuum (epsmax 
	= 1) (because there is a distance of a few Angstrom where there are no ions 
	at the solid/electrolyte interface) or a self-assembled monolayer (e.g. epsmin 
	= epsSAM = 4).
 
 Here, the dielectric constant is assumed to be proportional to the water 
density rho(z) where rho0 is the bulk density of water.
 This density profile has been obtained by 
molecular dynamics simulations approximated by a fit function (Schwierz et al.).
 By using this fit function, we obtain the following figure for rho(z) / rho0 
	(solid/electrolyte interface at z = 0 nm):
 
 
  
 Note that the water is depleted from the interface in the hydrophobic case by 
about 0.4 nm.
 This feature works for both boundaries of the electrolyte. This feature has 
	only been implemented/tested in 1D so far.
 
	read-in-water-density-from-file = yesA file for the water density profile can also be read in. The 
	data file should start at 0 nm (position of interface), the units are [nm], 
	and at 0 nm it should hold: rho/rho0 = 0.filename-water-density = "\\Home\My 
	Documents\My nextnano input files\read_in_WaterDensityDiamond.dat"
 
Further away from the interface (> several nm), it should hold: rho/rho0 
	= 1.
shift-PMF                  =
	0.1d0 ! [nm] (default: 
	0d0)The potentials of mean force VPMF(z) 
	can be shifted by dz: VPMF(z - dz)
A positive  
	value of dz shifts away from the solid/liquid interface.
A negative value of dz shifts towards    the solid/liquid 
	interface.
shift-water-density        =
	0.1d0 ! [nm] (default: 
	0d0)The water density rho(z) can be shifted 
	by dz: rho(z - dz)
A positive  value of dz shifts away 
	from the solid/liquid interface.
A negative value of dz shifts towards    the solid/liquid 
	interface.
     Buffer solution 
	include-buffer       =
	no      ! (default)Acetate buffer
 include-buffer       = 
	yes     !
 buffer-name          =
	ACETATE !
Hepes buffer=
	HEPES   !
Tris buffer=
	TRIS    !
Mops buffer=
	MOPS    !
PBS buffer (phosphate 
	buffer)=
	PBS     !
The allowed 
	buffer names and their parameters can be found in the database:=
	...     !
	$buffer-solutions10 mM of bufferbuffer-concentration =
	10d-3   !
	(The units are [M] = [mol/l] = [mole/liter] = 1d-3 [mol/cm³].)If the buffer ions should be included in the electrolyte 
	automatically (
 
include-buffer = yes), 
	then these ions must not be specified under the keyword
	$electrolyte-ion-content.Moreover, the names, the valencies and the total number of buffer ions are 
	taken from the entries in the database and included into the electrolyte 
	region automatically.
 From the total buffer concentration (
 buffer-concentration =
	10d-3) the program internally calculates 
	the concentration of each buffer ion species self-consistently, taking into 
	account
 - the pH value (pH-value = ...)
 - the ionic strength (The pKa value depends 
	on the ionic strength: "modified pKa' value".)
 - the temperature   (The pKa value 
	depends on the temperature.)Note that the constant 'A' that is used to calculate the 
	ionic strength dependence of the pKa value also depends on 
	the temperature.)
 For details on 'A', see this keyword:
 
	$buffer-constant-A(T)For more details on these calculations, have a look at the keyword
 
	$buffer-solutions.
pKa-temperature-dependence     = yes  !
	(default)   pKa' = pKa 
	+ dpKa/dT  *  DeltaT =
                                    
	  ! = pKa 
	+ dpKa/dT  *  (T-298.15)
                                    
	  ! where dpKa/dT is 
	the temperature coefficient specified in the database (dpKa_dT =
	...)and DeltaT is the temperature difference to the 
	reference temperature at 25° C.!
The temperature dependence of the pKa 
	value is switched off.= no
	  !
                                    
	  ! Note: The temperature dependence of the constant 
	'A' that is used to calculate the ionic
                                    
	  ! strength dependence of the pKa 
	value cannot be switch off.
                                    
	  ! It can only fixed to a certain value, 
	independent of temperature, by specifying only one value
                                    
	  ! of T and A(T) in the database 
or in the input file.
pKa-ionic-strength-dependence  = yes  !
	(default)The ionic strength of an electrolyte influences the pKa 
value of the buffer.!
                                    
	  ! This dependence can be described by an equation 
	(sometimes known as the
                                    
	  ! Debye-Hückel relationship) where the constant A(T) enters.
                                    
	  ! For details, see the description in the keyword
	$buffer-constant-A(T).
                                
	= no   ! The ionic 
	strength dependence of the pKa value is switched off.
	pKa-spatial-dependence         = yes  !
	(default)This is very similar as!
 pKa-ionic-strength-dependence
	but for each grid point.
                                    
	  ! Generally, at each grid point, a different pH 
	value, i.e. concentration of [H3O+] ions, is possible.
                                    
	  ! Thus, the ionic strength, the modified pKa' 
	value, the pH value and
                                    
	  ! the concentration of the buffer ions is 
	determined self-consistently
                                    
	  ! within the Poisson-Boltzmann equation in the 
	semiconductor/electrolyte system.
                                    
	  ! The output of the spatially varying pH value, pKa' 
	value, and ionic strength is described below.
                                
	= no   ! The same pKa' 
	value is assumed for all grid points.     Debye screening lengthInformation on the Debye screening length can be obtained from this file: 
DebyeScreeningLength.txt 
  1/kappa = [
  SUMi=1N  [ epsilon epsilon0 kBT 
/ (ci (zie)2) ]]1/2
 Example: 
  ion-number   ion-valency   ion-concentration 
  [mol/l]    ion-name1   
	-1.000000     7.0000002E-03                
	PBS^-
 2   -2.000000     
	3.0000000E-03                
	PBS^2-
 3    1.000000     
  1.3000000E-02                
  PBS+
 4   -1.000000     
  2.0000001E-03                
  Cl-
 5    2.000000     
  1.0000000E-03                
  Ni2+
 6   -1.000000     
  0.1400000                    
  Cl-
 7    1.000000     
  0.1400000                    
  K
 8    1.000000     
  3.1622776E-08                
  H3O+
 9   -1.000000     
  1.0000000E-06                
  OH-
 10   -1.000000     
  3.1622776E-08                
  anion-
 11    1.000000     
  1.0000000E-06                
  cation+
 
 --------------------------------------------------------------------
 
 
 dielectric constant: epsilon = 80.00000
 
 ====================================================================
 Debye screening length: 1/kappa = 0.772540134486749 [nm]
 ====================================================================
     Ionic strength
	Bulk ionic strength
 Information on the (bulk) ionic strength can be obtained from this file:
  
	IonicStrength.txtI = 1/2  SUMi=1N  (ci 
zi2)
 
 I = ionic strength in units of [ ] (or better: 
[concentration] = [M])
 i = number of ion species
 N = total number of different ion species
 ci = concentration of ion species 'i'
 zi = charge of ion species 'i'
 
 For details, see chapter 3 in
 R.J. Beynon, J.S. Easterby, "Buffer solutions: The basics", Oxford University 
Press (1996).
 
 Example:
 
  ion-number   ion-valency   ion-concentration 
  [mol/l]    ion-name1   
  -1.000000     1.0000000E-02                
  Cl-
 2    1.000000     
  1.0000000E-02                
  Na+
 3    1.000000     
  1.0000000E-07                
  H3O+
 4   -1.000000     
  1.0000000E-07                
  OH-
 5   -1.000000     
  1.0000000E-07                
  anion-
 6    1.000000     
  1.0000000E-07                
  cation+
 
 --------------------------------------------------------------------
 
 ====================================================================
 Ionic strength: I = 1.000020000000000E-002 [M]        
  ([M]= [mol/l])
 ====================================================================
 
	Spatially varying ionic strength
 In addition, as the concentration of the ion species varies with the spatial 
	grid coordinate, the ionic strength as a function of position is printed out 
	into a file. Possible filenames are:
 For the 1D output, the first column contains the grid point coordinate in units of- IonicStrength_vs_position1D.dat                          
	(1D)
 - IonicStrength_vs_position1D_ind001.dat                   
	(1D)
 - IonicStrength_vs_position2D.fld        
	/ *.coord / *.dat (2D/3D)
 - IonicStrength_vs_position2D_ind004.fld / *.coord / *.dat 
	(2D/3D)
 
 
	[nm], the second column contains the ionic strength for this grid 
	coordinate in units of [M].At the grid point coordinates where the electrolyte's ion concentration is 
	identical to the bulk ion concentration, the ionic strength must be equal to 
	the bulk ionic strength which is printed out to the file
  
IonicStrength.txt. For further details on the bulk ionic strength, see 
	the description above.
Spatially varying pH value and modified pKa' 
	valueThe files
 
 -   pH_vs_position1D/2D/3D.datcontain the grid point dependent pH value (calculated 
	from the spatially varying H3O+ concentration) and the
	grid point dependent modified pKa' value(s).-  pKa_vs_position1D/2D/3D.dat
 - pKa1_vs_position2D/3D.dat
 
Spatially varying concentration of buffer ionsThe files
 
 -  BufferIonConc_vs_position1D.datcontain the grid point dependent
	concentration of the buffer ions (calculated self-consistently from 
	the spatially varying pH value, ionic strength and modified pKa' 
	value(s)). Note that these concentrations do not represent the actual 
	concentration ci(r) of the buffer ions (see equation 
	below), they represent the concentration c0(r).-  BufferIonConc1_vs_position2D/3D.dat
 -  
	BufferIonConc2_vs_position2D/3D.dat
 
ci(r) 
	= c0(r) exp [ - ( zi 
	e ( phi(r) - UG ) ) / ( kB T ) ]
     Buffer solutionInformation on the properties of the buffer can be obtained from this file: 
Buffer1D.dat Example: 
	===================================================================Buffer name: PBS
 ===================================================================
 
 
 -------------------------------------------------------------------
 Input quantities:
 -------------------------------------------------------------------
 Buffer concentration: [PBS] = 
	1.000000000000000E-002 [M]
 
 pH value:            
	pH    = 6.636000
 
 Temperature:          T     
	= 298.1500 [K], i.e.
	25.00000 [C]
 
 The pKa value depends on temperature 'T'.
 The pKa value depends on ionic strength 'I'.
 
 z_acid     =  
	0.0000000000000  -1.0000000000000  -2.0000000000000
 dpKa/dT    =  
	0.0044000000000  -0.0028000000000  -0.0260000000000
 pKa (25 C) =  2.1500000000000   
	7.2100000000000  12.3300000000000
 
 
 
 -------------------------------------------------------------------
 Calculated quantities:
 -------------------------------------------------------------------
 pKa (T)    =  
	2.1500000000000   7.2100000000000  12.3300000000000
 pKa'(T,I)  =  2.0815978725534   
	7.0047936176601  11.9879893627668
 
 A = 0.511400000000000
 Note: A always depends on temperature.
 
 Ionic strength: I = 2.599208084382508E-002
	[M]
 
 
 Concentration of buffer ions:
 -----------------------------
 ion-number   ion-valency   ion-concentration [mol/l]   
	ion-name
 0            
	...                  
	     H3PO4
 3    
	-1.000000     7.0038019E-03              
	H2PO4^-
 4    -2.000000    
	2.9959893E-03              
	HPO4^2-
 5    -3.000000    
	1.3321431E-08              
	PO4^3-
 6     
	1.000000     1.2995820E-02              
	Na^+
 The concentration of all ions (not only the buffer ions), the ionic strength, 
as well as the pKa' value(s) as a function of pH are contained 
in this file:
 BufferIonConc_vs_pH1D.dat
 Oxide/electrolyte interface states (interface charges, so-called 
"site-binding model") can be specified here:
$interface-states More information on the electrolyte liquid and the Poisson-Boltzmann equation:
$electrolyte-ion-content   Preliminary feature 
	If we have one Dirichlet boundary condition only, then this Dirichlet 
	value is assigned to PhiInfinityV(1).If we have two Dirichlet boundary conditions, then the second Dirichlet 
	value is assigned to PhiInfinityV(1).(This means we assume that the electrolyte is at the right side of a 1D 
	simulation.)
 |