| Output-1-band-schroedingerThe output of the eigenvalues and eigenfunctions for the single-band 
Schrödinger equations ('effective-mass') is controlled by this 
keyword. All eigenfunctions and eigenvalues between cb-min-ev and 
cb-max-ev are put out for each band. !---------------------------------------------------------------!$output-1-band-schroedinger                            
optional !
 destination-directory                 
character       
required !
 sg-structure                          
character       
optional !
 effective-mass-tensor                 
character       
optional !
 complex-wave-functions                
character       
optional !
 eigenvalues-only                 
     character       
optional !
 scale                                 
double          
optional !
 shift-wavefunction-by-eigenvalue      
character      
optional !
 !
 conduction-band-numbers               
integer_array   
optional !
 cb-min-ev                             
integer         
optional !
 cb-max-ev                             
integer         
optional !
 !
 valence-band-numbers                  
integer_array   
optional !
 vb-min-ev                             
integer         
optional !
 vb-max-ev                             
integer         
optional !
 !
 interband-matrix-elements             
character       
optional !
 intraband-matrix-elements             
character       
optional !
 intraband-lifetime                    
character       
optional !
 intraband-matrix-elements-operator    
character       
optional !
 !
 stark-effect-out                     
character      
optional !
 voltage-offset                       
double         
optional !
 lever-arm-length                     
double         
optional !
 !
 resonance-bound-states               
integer_array  
optional !
 resonance-incidence                  
integer_array  
optional !
 !
 $end_output-1-band-schroedinger                        
optional !
 !---------------------------------------------------------------!
   Syntax:destination-directory = my-directory/e.g. = Schroedinger_1band/
 
  Name of directory to which the files should be written. Must exist 
  and directory name has to include the slash (\ for DOS and / for UNIX).   sg-structure= yes / 
no
 
  Flag whether to put out the Schrödinger structure file (sg_info.txt). This file describes the 
  internal number and degeneracy of the Schrödinger 
  equations that have to be solved.Note: If the energy bands are split due to strain, e.g. X valley and L 
  valley, then the Schrödinger equation has to be solved for different band 
  edges. If the masses are anisotropic, then for each mass valley a separate 
  Schrödinger equation has to be solved.
   effective-mass-tensor= yes / 
no
 
  Flag whether to put out the effective mass tensor (1/m)ij for 
  each Schrödinger equation to be solved. Output is a 3x3 matrix for each grid 
  point.(
 *mass_tensor*.dat) Example for 1D output:cb3mass_tensor_qc1_sg3_deg1.dat
 cb3 = conduction band no. 3 (=X band)
 qc1 = quantum cluster no. 1
 sg3 = no. of Schrödinger equation to be solved
 deg1 = degeneracy of Schrödinger equation to be solved
 position [nm]position       (1/m)_xx       
  (1/m)_yy       (1/m)_zz       
  (1/m)_xy       (1/m)_xz       
  (1/m)_yz
 ...
 0.350750E+002  0.769231E+000  0.434783E+001  0.434783E+001  
  0.000000E+000  0.000000E+000  0.000000E+000
 ...
 1/1.3 = 0.769   1/0.23
  = 4.434  1/0.23 = 
  4.34
 
 In this example the mass tensor is diagonal and (1/m)xx contains 
  1/(longitudinal mass ml) and (1/m)yy=(1/m)zz 
  contains 1/(transverse mass mt) of the X valley of GaAs. database_nn3.in:More information on 
  effective masses...$binary-zb-default
 binary-type            
  = GaAs-zb-default
 conduction-band-masses = 0.067d0 0.067d0  0.067d0   ! Gamma
 1.9d0   0.0754d0 0.0754d0  ! L  (ml mt 
  mt)
 1.3d0   0.23d0   0.23d0    ! X  (ml 
  mt mt)
 
 Note that the labels x, y and z of the mass tensor output are defined 
	with respect to the
	
	simulation coordinate system.   complex-wave-functions = yes     
! It would have been better to call this amplitudes rather 
than complex-wave-functions.=
no
 
  Flag whether to print out the wave functions psi (amplitudes) including real and 
  imaginary parts in addition to the output of the probability densities Psi².The amplitudes of a single-band Hamiltonian are typically real and the 
	imaginary part is zero. This does not hold for nonzero magnetic fields or 
	nonzero superlattice vectors.
 Depending on the algorithm inside the code (e.g. storage of the Hamiltonian 
	in a real or complex array, or usage of a real or complex eigenvalue 
	solver), the output contains only the real part, or the real part and the 
	imaginary part (which is zero in most cases). In the case of a complex 
	eigenvalue solver, the imaginary part might be nonzero even for zero 
	magnetic field or no superlattice vector. If this is the case, the 
	wavefunctions could be converted into a real basis.
   eigenvalues-only        = yes / 
no   ! (default: no)
 
	Sometimes one is only interested in plotting out the eigenvalues but not 
	the eigenfunctions.Nevertheless, internally in the program the 
	eigenfunctions are used (e.g. for calculating the density).
   scale = 1d0
 
  The scale parameter can be used to scale the size of the wave functions in the output file.This is just for visualization purposes in order to fit wavefunctions more 
	nicely into band structure plots. This scaling has no physical meaning.
 So far, it scales the wave function  psi and psi²  (i.e. the probability amplitude or charge density) the same way:
 psi²' = scale * psi²psi'  = scale * psi
 1D: The units of psi² are [1/nm], the units 
  of psi are SQRT([1/nm]).
    This way the integrated psi² over the 
  whole device (which is in units of [nm]) equals 1.2D: The units of
  psi² are [1/nm²], the units of psi are SQRT([1/nm²]).
    This way the integrated psi² over the 
  whole device (which is in units of [nm²]) equals 1.3D: The units of
  psi² are [1/nm³], the units of psi are SQRT([1/nm³]).
    This way the integrated psi² over the 
  whole device (which is in units of [nm³]) equals 1. (It holds for unscaled psi², i.e.scale = 1d0: A good check to see if psi² is 
	normalized correctly is to apply 
  Neumann boundary conditions at all boundaries of the quantum cluster. The 
  ground state probability density then is constant over the whole device. This 
  value in units of [1/nm] (1D), [1/nm²] (2D) or [1/nm³] (3D) multiplied by the 
  length (1D), area (2D) or volume (3D) of the quantum cluster must equal 1.)   shift-wavefunction-by-eigenvalue  = yes 
! (1D:   yes 
= default)(2D/3D:= 
no  !
no  = default)
 
  If yes, in addition to default output, the wave function psi and the 
	probability density psi2 are shifted with respect to their 
	eigenvalue.This is sometimes useful when plotting the wave functions together with the 
	band edge profile.
 The relevant output files have the label
  _shift in their file 
	names.   conduction-band-numbers = 1 2 3
 
  Integer array that determines the numbers of the conduction bands for which 
  the corresponding eigenvalues and eigenfunctions should be put out.   cb-min-ev = 1
 
  Lower boundary for interval of conduction band eigenvalues and 
  eigenfunctions to be put out.   cb-max-ev = 1
 
  Upper  boundary for interval of conduction band eigenvalues and 
  eigenfunctions to be put out.   valence-band-numbers = 1 2 3
 
  Integer array that determines the numbers of the valence bands for which 
  the corresponding eigenvalues and eigenfunctions should be put out.   vb-min-ev = 1
 
  Lower boundary for interval of valence band eigenvalues and eigenfunctions 
  to be put out.   vb-max-ev = 1
 
  Upper  boundary for interval of valence band eigenvalues and 
  eigenfunctions to be put out.   interband-matrix-elements = yes  ! calculates interband matrix elements
= 
no
==> square of the spatial overlap matrix element 
| <psi_i* | psi_j> |^2
The output files
 
   interband1D_vb001_cb001_qc001_hlsg001_deg001_dir.dat
(heavy   hole <-> Gamma conduction band)(light     holeinterband1D_vb002_cb001_qc001_hlsg002_deg001_dir.dat
 <-> Gamma conduction 
band)(split-off holeinterband1D_vb003_cb001_qc001_hlsg003_deg001_dir.dat
 <-> Gamma conduction band)contain data like
which are the spatial overlap matrix elements between all calculated 
states in bands 'cband' and 'vband' from eigenvalues 'Spatial overlap matrix elements | < psi_hl_i | psi_el_j > |^2 and
 energy of transition in [eV]
 heavy hole <-> Gamma conduction band
 ------------------------------------------------------------------------
 |<psi_vb001|psi_cb001>|^2  0.987507995852382         
1.654103
 |<psi_vb001|psi_cb002>|^2  1.336279027563441E-030
 |<psi_vb001|psi_cb003>|^2  0.145559411422541         
2.538366
 |<psi_vb002|psi_cb001>|^2  1.133344425625580E-030
 |<psi_vb002|psi_cb002>|^2  0.964789984970279         
2.065139
 
min-ev' to 'max-ev'.
 There is also a two-dimensional plot available: 
interband1D_vb001_cb001_qc001_hlsg001_deg001_dir_2Dplot.fld / *.coord / *.datIt contains the matrix elements Mij where the x axis refers to 
the i hole states, and the y axis to the j electron states.
If only Mii transitions are allowed, a diagonal structure should be 
seen (e.g. in an infinite quantum well).
  
To plot matrix elements vs. electric field.
The electric field is calculated by
  ('voltage-offset' + vbias) / 
distancewith
 v_bias = sweep_index * sweep_voltage.The electric field is scaled to
 
 [kV/cm].The
 
'voltage-offset'is the built-in potential in [V].The length of the region with constant field [in scaled units: 
nm] is specified via 'distance:
lever-arm-length'.This only works for intrinsic regions with quasi constant electric field, 
but imitates the way experimental physicists approximate the electric field.
 
 In order to use only bound states the
 MODULE bound_states_1D must be initialized.
 => $quantum-bound-states
 -> momentum matrix <psi*|p|psi>  (not implemented yet)(not implemented yet)-> Coulomb element <psi*|V|psi>
with
 V = Int( 1/4pi (r1-r2) * |psi(r2)|‹dr2 )
   intraband-matrix-elements-operator = "z^2"                     ! (needed for standard deviation)(useful 
to study for perturbation theory)= '0.0002 * x * ( x - 10)'  !
Calculate matrix elements for this operator:
matrix elements ii, i.e. expectation value (i=i), filename:<i|Op|i>
 
intraband_ExpectationValue_cb1_qc1_sg1_deg1.txtIf the operator is the perturbation potential operator, then the units of 
this file are eV,
                     
and the expectation values are equivalent to the 1st-order 
corrections to the energies En(1) using nondegenerate 
perturbation theory.
                     
If the operator is the perturbation potential operator, then the file 
intraband_2ndOrder_cb1_qc1_sg1_deg1.txt,
                     
contains the 2nd-order corrections to the energy eigenvalues En(2) 
using nondegenerate perturbation theory.
  <f|Op|i>           
matrix elements fi, filename: 
intraband_MatrixElement_cb1_qc1_sg1_deg1.txt / *_2D_plot.fld
  <f|Op|i>/(E_f-E_i)  matrix elements fi divided by the 
energy difference. These matrix elements are needed for nondegenerate
                     
perturbation theory, i.e. 1st-order corrections to the wave 
functions psin(1), and 2nd-order corrections to 
the energies En(2).
                     
filename: intraband Coefficient cb1 qc1 sg1 deg1.dat / 
*_2D_plot.fldThe coordinates
  x, 
y,z refer to the grid 
and have to be given in units of [nm]. The function is evaluated 
automatically.
 The calculated matrix elements have the units of '
 intraband-matrix-elements-operator', 
obviously.
   intraband-matrix-elements = p          
! < psif* | p   
| psii >(spatial overlap)= 
z          ! < psif* | z   
 | psii >
 = 
o          ! < psif* |       psii 
>
(prints out 
both matrix elements '= 
yes        !
p' and  
'z')(prints out all matrix elements, i.e. '= 
everything !
p',  
'z',  'o', 
and the one specified in intraband-matrix-elements-operator)Calculates intersubband dipole moment and oscillator strength 
where the subscript= 
no         !
 
 i means initial and f means
final state.Matrix elements with small values, i.e. forbidden transitions, are omitted from 
the output file. If you need these values, please use
  debug-level =
1.
 The output files
 
   intraband_p_cb1_qc1_sg1_deg1.txt
!
(Gamma conduction band)(heavy hole)intraband_p_vb1_qc1_sg1_deg1.txt
!
(light hole)intraband_p_vb2_qc1_sg2_deg1.txt
!
(split-off hole)intraband_p_vb3_qc1_sg3_deg1.txt
!
kind of matrix element ('z                      
!
p' / 'z' 
/ 'o')kind of matrix element ('o                      
!
p' / 'z' 
/ 'o')contain data like
(Note:
 
 | < psif* | 
p | psii >
|
matrix element given in green color.)
 
(matrix 
element <1|1> depends 
on choice of origin!)-------------------------------------------------------------------------------
 Intersubband transitions
 => Gamma conduction band
 -------------------------------------------------------------------------------
 Electric field in z-direction [kV/cm]: 0.0000000E+00
 -------------------------------------------------------------------------------
 
 -------------------------------------------------------------------------------
 Intersubband dipole moment  
| < psi_f* | 
z | psi_i > |  [Angstrom]
 Intersubband 
dipole moment  | < psi_f* | p | psi_i > |  [h_bar / Angstrom]
 ------------------|------------------------------------------------------------
 Oscillator strength []
 ------------------|--------------|---------------------------------------------
 Energy of transition [eV]
 ------------------|--------------|--------------|------------------------------
 m* [m_0]
 ------------------|--------------|--------------|----------|-------------------
 <psi001*|z|psi001>  249.0000
(matrix element <1|1> independent of origin)<psi001*|p|psi001>  4.3405972E-19
 
<psi002*|z|psi001>  18.01673      
0.9602799      
0.1694912  6.6500001E-02(same parity: symmetric)<psi002*|p|psi001>  2.6649671E-02  
0.9602799      0.1694912  6.6500001E-02
 
 <psi003*|z|psi001>  6.1430171E-07  
2.9757722E-15  0.4517909  6.6500001E-02
(same parity: symmetric)<psi003*|p|psi001>  2.7325134E-18
 
 <psi004*|z|psi001>  1.441336       
3.0698571E-02  0.8466209  6.6500001E-02
 <psi004*|p|psi001>  1.0649348E-02  3.0698579E-02  
0.8466209  6.6500001E-02
 
 <psi005*|z|psi001>  1.6007220E-07  
6.0536645E-16  1.353592   6.6500001E-02
(same parity: symmetric)<psi005*|p|psi001>  6.9518724E-18
 
 <psi006*|z|psi001>  0.3971010      
5.4281605E-03  1.972205   6.6500001E-02
 <psi006*|p|psi001>  6.8347314E-03  5.4281540E-03  
1.972205   6.6500001E-02
 
 <psi007*|z|psi001>  5.1874160E-08  
1.2690011E-16  2.701849   6.6500001E-02
which are the intersubband dipole moments<psi007*|p|psi001>  2.8686024E-19
 
 <psi008*|z|psi001>  0.1634139      
1.6508275E-03  3.541806   6.6500001E-02
 <psi008*|p|psi001>  5.0510615E-03  1.6508278E-03  
3.541806   6.6500001E-02
 ...
 <psi020*|z|psi001>  1.0178176E-02  3.9451432E-05  
21.81846   6.6500001E-02
 <psi020*|p|psi001>  1.9380626E-03  3.9452334E-05  
21.81846   6.6500001E-02
 
 Sum rule of oscillator strength: f_psi001 = 
0.9994023
 Sum rule of oscillator strength: f_psi001 = 0.9994023
 ...
 
 
 
 | Mfi | = | integral  (psif* (z) z psii 
  (z) dz) |
 
 and the oscillator strengths
 
 ffi = 2m* / hbar² * (Ef
 
-Ei)  | Mfi |²
 between all calculated 
states in each band from eigenvalues '
 min-ev' to 'max-ev'.Note that it holds: e.g. ffi = - fif.
 
 
 The commonly used
 Intersubband dipole moment  | < psi_f* | z | psi_i > |  
[Angstrom]
depends on the choice of origin for the matrix elements when
  f = i, 
thus the user might prefer to output the
                   
Intersubband dipole moment  | < psi_f* | p | psi_i > |  
[h_bar / Angstrom]which are the intersubband dipole moments
 
 | Nfi | = | integral  (psif* (z) pz 
psii 
  (z) dz) | =  |
 -i hbar integral  
(psif* (z) d/dz psii 
  (z) dz) |
 and the oscillator strengths
 
 ffi = 2m* / hbar² (Ef
 
-Ei)  | Mfi |²  = 
2 / ( m* (Ef
-Ei) )  | Nfi |²
 between all calculated states in each band from eigenvalues '
 min-ev' 
to 'max-ev'.
 
 
 For more details, have a look at the tutorial:
Optical 
intersubband transitions in a quantum well - Intraband matrix elements and selection rules
   Note: To get correct overlap integrals for inter- and intraband transitions, 
the wave functions psi must be real for a real, symmetric matrix which is the 
case for the single-band Schrödinger equation (without superlattice and without 
magnetic field).In 2D and 3D, if
  magnetic-field-on = yes
and schroedinger-masses-anisotropic = yes
or = box and if
schroedinger-1band-ev-solv = arpack or 
= chearn, then the wave functions psi will 
have an imaginary part unequal to zero leading to different results for the 
spatial overlap integrals.   intraband-lifetime        = yes  ! calculates the lifetime of intersubband transitions
= no   ! does nothing 
(default)
 This feature is useful for e.g. quantum cascade lasers.Note:
  intraband-matrix-elements must not be set to no  in order to print out the lifetimes (scattering rates).See tutorial "Scattering times for electrons in unbiased and biased single and multiple 
quantum wells" for more details.
 If the intersubband transition energy between the states i and j is smaller than 
the LO phonon energy (Eij < ELO), then LO phonon 
scattering is impossible, and thus the entry for the lifetime in the output file 
does not show a number.
     stark-effect-out          
= yes= no
 voltage-offset            
= 1d0    ! necessary for 
stark-effect-out          =
yesnecessary for!
 interband-matrix-elements = 
yesin units of
 [V]
 lever-arm-length          =
???    ! necessary for 
stark-effect-out          =
yesnecessary for!
 interband-matrix-elements = 
yesin units of
 [nm]
 resonance-bound-states    = ???resonance-incidence       = 
???
 
   Output:
   Eigenfunctions and 
eigenvalues: Filename:  
  
    
      | cb003_ind002_qc001_sg001_deg001_neu.dat |  
      | cb003 | Number of 
      conduction/valence band |  
      |      _ind002 | Number of voltage sweep 
      step |  
      |             _qc001 | Number of quantum cluster |  
      |                   _sg001 | Number of Schrödinger 
      equation |  
      |                        
      _deg001 | Number of subsolution |  
      |                               _neu_dir
 | Boundary condition (Dirichlet  
      _dir and Neumann _neu) |  Structure:                           
  
    | position[nm] | ev_(001)[eV] | ev_(002)[eV] | psi^2_(001) | psi^2_(002) |  
    | Position in space | Eigenvalue number 1[eV] | Eigenvalue number 2 [eV] | Eigenfunction number 1 [psi2] | Eigenfunction number 2 [psi2] |    CommentsStructure of the 1-band solutions (sg_info.txt) Meaning of: num_sgFor different band energies, different Schrödinger equations have to be solved.
 These are numbered by
 num_sg.
 
 num_degFor equal energy but 
different masses again, different equations have to be solved.
These are numbered by
 num_deg). Eigenvalues are in [eV]. Output:
 -       .dat Eigenfunctions arepsi^2, 
normalized to one (with respect to [nm] units].
 - _shift.dat: Eigenfunctions arepsi^2, 
normalized to one (with respect to [nm] units] and shifted by their eigenvalues. 
     |