|    |  | nextnano3 - Tutorialnext generation 3D nano device simulator1D TutorialOptical intersubband transitions in a quantum well - Intraband matrix elements and selection rulesAuthor:
Stefan Birner If you want to obtain the input files that are used within this tutorial, please 
check if you can find them in the installation directory.If you cannot find them, please submit a
Support Ticket.
 
 -> 1DQW_intraband_matrixelements_infinite_nn3.in / *_nnp.in - input files for the nextnano3 and nextnano++ 
software-> 1DQW_intraband_matrixelements_infinite_kp_nn3.in
 
 
 Optical intersubband transitions in a 10 nm AlAs / GaAs / AlAs quantum well - 
Intraband matrix elements and selection rulesEigenstates and wave functions in the quantum well
  We consider a 10 nm GaAs quantum well embedded between AlAs barriers. The structure 
  is assumed to be unstrained.We assume "infinite" AlAs barriers. (This can be achieved by chosing a 
  band offset of 100 eV.)
 This way we can compare our results to analytical text books results.
-> 1DQW_intraband_matrixelements_infinite_nn3.inscale the wave function psi and psi² so that it is easier to visualize 
  them
 $output-1-band-schroedinger
 ...
 scale                     
  = 0.3d0 !
calculate intersubband dipole moment  | < psif* | z  | psii 
  > |  and oscillator strength ffiintraband-matrix-elements = z    
  !
calculate intersubband dipole moment  | < psif* | pz | psii 
  > |  and oscillator strength ffi!intraband-matrix-elements = p    
  !
to print out psi in addition to psi²complex-wave-functions    = 
  yes   !
The figure shows the six lowest eigenfunctions of the 1D GaAs quantum 
  well. The conduction band edge of GaAs is assumed to be located at 0 eV.
 
 
  
 For "infinite" barriers we obtain using single-band Schrödinger 
  effective-mass approximation (i.e. isotropic and parabolic effective masses) 
  the following eigenvalues:
 
 E1 = 0.05652 eV    
  (0.05655)
 E2 = 0.22601 eV    
  (0.22618 = 2² E1)
 E3 = 0.50831 eV    
  (0.50891 = 3² E1)
 E4 = 0.90314 eV    
  (0.90473 = 4² E1)
 E5 = 1.41011 eV    
  (1.41365 = 5² E1)
 E6 = 2.02872 eV    (2.03565
  = 6² E1)
 
 The analytic formula in the infinite barrier QW model reads: En = hbar²/2m* 
  (pi n / L )² = 0.056546 n²
 where L is the width of the quantum well (L = 10 nm). The analytically 
  calculated values are given in brackets and are in excellent agreement.
 
 We used an electron effective mass of 0.0665 m0 and a 0.1 nm grid 
  resolution.
 We used:
 
  schroedinger-1band-ev-solv      =
  LAPACK-ZHBGVX ! 'LAPACK', 'LAPACK-ZHBGVX', 
  'arpack', 
  'it_jam', 'chearn'schroedinger-masses-anisotropic = box         
   ! 'yes', 'no', 
  'box'
    Intersubband matrix elements
  Light that propagates normal to the quantum well layers cannot be 
  absorbed by intraband transitions.
 However, if the light propagates in the plane of the well (i.e. the 
  electric field is oriented normal to the quantum well layers), intersubband 
  absorption occurs.
 
 To understand optical intersubband (or intraband) transitions for light that 
  travels in the plane of the QW, we have to examine the intersubband dipole 
  moment
 
 | Mfi | = | integral  (psif* (z) z psii 
  (z) dz) |
 
 where psi is the envelope function of the relevant state (within the same 
  band).
 
 In our case, we have a symmetric quantum well with infinite barriers, thus our envelope functions are 
  either symmetric or antisymmetric. The intersubband matrix elements 
  will vanish if the envelope functions have the same parity, e.g. | M13 
  | = | M31 | = 0.
 In this simple example, the matrix elements can be calculated analytically, 
  e.g. | M12 | = 16 / (9 pi²) L  = 1.8013 
  [nm].
 nextnano³ result: | M12 | = | M21 | = 1.8017 
  [nm]
 | M13 | = | M31 | = 0.00000006 
	[nm]
 
 For the "infinite" QW barrier model, this matrix element is independent 
  of the effective mass, thus the matrix elements in the conduction band are the 
  same as in the valence bands (single-band approximation).
 
 A useful quantity is the oscillator strength ffi which is 
  defined as follows:
 
 ffi = 2m* / hbar² (Ef
 
  -Ei)  | Mfi |²ffi =
 -fif
 f21 for our simple infinite barrier example is given by
 f21 = 256 / (27 pi²) = 0.9607
 and is independent of the well width.
 The nextnano³ result is:  f21 = 0.9603 
  =
 -f12
 We can also see that this is a strong transition because all transitions from 
  state '1' to state 'f' must add up to unity (so-called "f-sum rule"):
 sumf (ff1) = 1.0            
  (Thomas-Kuhn sum rule for constant effective mass m*.)
 Thus all other transitions are much weaker.
 
 It is interesting to look at the transitions starting from the second level i 
  = 2. The lowest oscillator strength f12 =
 -0.96 is 
  negative, but the sum over all ff2 must still give unity, thus 
  oscillator strengths larger than 1 are possible, e.g. f32 = 1.87.
The intersubband dipole moments and the oscillator strenghts are contained in this 
  file:
   Schroedinger_1band/intraband_z1D_cb001_qc001_sg001_deg001_dir.txt 
  - Gamma conduction bandFor each transition, the transition energy is given.
 
 The effective masses that have been used for the calculation of the oscillator 
  strengths are also indicated. They are calculated by building an average of 
  the parallel effective masses for each grid point, weighted by the 
  square of the wave function on each grid point. In this particular example, the 
  effective masses are constant and do not vary with position (
 m|| 
  = 0.0665 m0).(Assuming that the masses are isotropic, it is fine to use the parallel 
  effective masses.)
 
 
 
  -------------------------------------------------------------------------------(same parity: symmetric)Intersubband transitions
 => Gamma conduction band
 -------------------------------------------------------------------------------
 Electric field in z-direction [kV/cm]: 0.0000000E+00
 -------------------------------------------------------------------------------
 
 -------------------------------------------------------------------------------
 Intersubband dipole moment  | < psi_f* | z | psi_i > 
	|  [Angstrom]
 ------------------|------------------------------------------------------------
 Oscillator strength []
 ------------------|--------------|---------------------------------------------
 Energy of transition [eV]
 ------------------|--------------|--------------|------------------------------
 m* [m_0]
 ------------------|--------------|--------------|----------|-------------------
 <psi001*|z|psi001>  249.0000
 <psi002*|z|psi001>  18.01673      
  0.9602799      
  0.1694912  6.6500001E-02
 <psi003*|z|psi001>  6.1430171E-07  
  2.9757722E-15  0.4517909  6.6500001E-02
(same parity: symmetric)<psi004*|z|psi001>  1.441336       
  3.0698571E-02  0.8466209  6.6500001E-02
 <psi005*|z|psi001>  1.6007220E-07  
  6.0536645E-16  1.353592   6.6500001E-02
(same parity: symmetric)<psi006*|z|psi001>  0.3971010      
  5.4281605E-03  1.972205   6.6500001E-02
 <psi007*|z|psi001>  5.1874160E-08  
  1.2690011E-16  2.701849   6.6500001E-02
(same parity: antisymmetric)<psi008*|z|psi001>  0.1634139      
  1.6508275E-03  3.541806   6.6500001E-02
 ...
 <psi020*|z|psi001>  1.0178176E-02  3.9451432E-05  
  21.81846   6.6500001E-02
 Sum rule of oscillator strength: f_psi001 = 
  0.9994023
 
 <psi001*|z|psi002>  18.01673     
  -0.9602799     
  -0.1694912  6.6500001E-02
 <psi002*|z|psi002>  249.0000
 <psi003*|z|psi002>  19.45806      
  1.865556       0.2822997  
  6.6500001E-02
 <psi004*|z|psi002>  2.0636767E-06  
  5.0333130E-14  0.6771297  6.6500001E-02
(same parity: antisymmetric)<psi005*|z|psi002>  1.838436       
  6.9852911E-02  1.184101   6.6500001E-02
 <psi006*|z|psi002>  1.4976163E-08  
  7.0571038E-18  1.802713   6.6500001E-02
(same parity: antisymmetric)<psi007*|z|psi002>  0.5605143      
  1.3886644E-02  2.532358   6.6500001E-02
 <psi008*|z|psi002>  8.7380023E-08  
  4.4941879E-16  3.372315   6.6500001E-02
(same parity: antisymmetric)<psi009*|z|psi002>  0.2461317      
  4.5697703E-03  4.321757   6.6500001E-02
 <psi010*|z|psi002>  8.3240280E-07  
  6.5062044E-14  5.379748   6.6500001E-02
(same parity: symmetric)<psi011*|z|psi002>  0.1302904      
  1.9393204E-03  6.545245   6.6500001E-02
 ...
 <psi020*|z|psi002>  2.7233656E-07  
  2.8025147E-14  21.64897   6.6500001E-02
 Sum rule of oscillator strength: f_psi002 = 0.9975320
 
 <psi001*|z|psi003>  6.1430171E-07 
  -2.9757722E-15 -0.4517909  6.6500001E-02
(same parity: symmetric)<psi002*|z|psi003>  19.45806     
  -1.865556      -0.2822997  6.6500001E-02
 <psi003*|z|psi003>  249.0000
 <psi004*|z|psi003>  19.85515      
  2.716784       0.3948300  
  6.6500001E-02
 <psi005*|z|psi003>  6.4708888E-07  
  6.5907892E-15  0.9018011  6.6500001E-02
(same parity: symmetric)<psi006*|z|psi003>  2.001849       
  0.1063465      1.520414   6.6500001E-02
 <psi007*|z|psi003>  3.9201248E-07  
  6.0352080E-15  2.250058   6.6500001E-02
(same parity: symmetric)<psi008*|z|psi003>  0.6432316      
  2.2314854E-02  3.090015   6.6500001E-02
 <psi009*|z|psi003>  2.6240454E-07  
  4.8547223E-15  4.039457   6.6500001E-02
...
 <psi020*|z|psi003>  3.1797737E-02  3.7707522E-04  
  21.36667   6.6500001E-02
 Sum rule of oscillator strength: f_psi003 = 0.9945912
 
 ...
The commonly usedIntersubband dipole moment  | < psi_f* | z 
  | psi_i > |  [nm]
depends on the choice of origin for the matrix elements when
  f = i, thus the user might prefer to output the
                   
  Intersubband dipole moment  | < psi_f* | p 
  | psi_i > |  [h_bar / nm]which are the intersubband dipole moments
 
 | Nfi | = | integral  (psif* (z) pz 
  psii 
  (z) dz) | =  |
 -i hbar integral  
  (psif* (z) d/dz psii 
  (z) dz) |
 and the oscillator strengths
 
 ffi = 2m* / hbar² 
  (Ef
 
  -Ei)  | Mfi |²  = 2 / ( m* (Ef
  -Ei) )  | Nfi |²
 between all calculated states in each band from eigenvalues '
 min-ev' 
  to 'max-ev'.
 In the simple QW of this tutorial, the matrix elements can be 
  calculated analytically, e.g. | N21 | = 8 hbar / (3 L)   = 
  26.66 hbar /nm.
 nextnano³ result: | N21 | = | N12 | = 2.665 
  hbar /Angstrom
 | N31 | = | N13 | = 0
 
 Here, the definition of the oscillator strength ffi has to 
  be adjusted slightly:
 
 ffi = 2m* / hbar² (Ef
 
  -Ei)  | Mfi |² = 2 / ( m* (Ef
  -Ei) )  | Nfi |²
 ffi =
 -fif
 f21 for our simple infinire barrier example is given by
 f21 = 256 / (27 pi²) = 0.9607
 and is independent of the well width.
 The nextnano³ result is:  f21 = 0.9603 
  =
 -f12
 
 The intersubband dipole moments and the oscillator strenghts are contained in this 
  file:
 
   Schroedinger_1band/intraband_p1D_cb001_qc001_sg001_deg001_dir.txt 
  - Gamma conduction bandThe numbers show a comparison betwenn the
 
 
  z and the pz
  matrix elements (in green).(matrix element <1|1> depends on choice of origin!)
 -------------------------------------------------------------------------------
 Intersubband dipole moment  
	| < psi_f* 
  | z | psi_i > |  [Angstrom]
 Intersubband 
  dipole moment  | < psi_f* | p | psi_i > |  [h_bar / Angstrom]
 ------------------|------------------------------------------------------------
 Oscillator strength []
 ------------------|--------------|---------------------------------------------
 Energy of transition [eV]
 ------------------|--------------|--------------|------------------------------
 m* [m_0]
 ------------------|--------------|--------------|-----------|------------------
 <psi001*|z|psi001>  249.0000
(matrix element <1|1> independent of origin)<psi001*|p|psi001>  4.3405972E-19
 
<psi002*|z|psi001>  18.01673      
0.9602799      
0.1694912  6.6500001E-02(same parity: symmetric)<psi002*|p|psi001>  2.6649671E-02  
  0.9602799      0.1694912  6.6500001E-02
 
 <psi003*|z|psi001>  6.1430171E-07  
2.9757722E-15  0.4517909  6.6500001E-02
(same parity: symmetric)<psi003*|p|psi001>  2.7325134E-18
 
 <psi004*|z|psi001>  1.441336       
3.0698571E-02  0.8466209  6.6500001E-02
 <psi004*|p|psi001>  1.0649348E-02  
  3.0698579E-02  0.8466209  6.6500001E-02
 
 <psi005*|z|psi001>  1.6007220E-07  
6.0536645E-16  1.353592   6.6500001E-02
(same parity: symmetric)<psi005*|p|psi001>  6.9518724E-18
 
 <psi006*|z|psi001>  0.3971010      
5.4281605E-03  1.972205   6.6500001E-02
 <psi006*|p|psi001>  6.8347314E-03  
  5.4281540E-03  1.972205   6.6500001E-02
 
 <psi007*|z|psi001>  5.1874160E-08  
1.2690011E-16  2.701849   6.6500001E-02
<psi007*|p|psi001>  2.8686024E-19
 
 <psi008*|z|psi001>  0.1634139      
1.6508275E-03  3.541806   6.6500001E-02
 <psi008*|p|psi001>  5.0510615E-03  
  1.6508278E-03  3.541806   6.6500001E-02
 ...
 <psi020*|z|psi001>  1.0178176E-02  3.9451432E-05  
21.81846   6.6500001E-02
 <psi020*|p|psi001>  1.9380626E-03  
  3.9452334E-05  21.81846   6.6500001E-02
 
 Sum rule of oscillator strength: f_psi001 = 
0.9994023
 Sum rule of oscillator strength: f_psi001 = 0.9994023
 ...
 
 8-band k.p calculation for k|| = (kx,ky) 
= 0
  The following input file performs the same calculations as above but this 
  time using the 8-band k.p model.We modified the 8-band k.p parameters and decoupled (!) the 
  electrons from the holes (EP = 0 eV, S = 1/me). This way 
  we have an effective single-band model and thus we are able to compare the 
  k.p results to the single-band results in order to check for consistency.-> 1DQW_intraband_matrixelements_infinite_kp_nn3.in
 
The numbering of the k.p eigenstates differs slightly from the 
  single-band eigenstates because the k.p eigenstates are two-fold 
  spin-degenerate. The actual values for the matrix elements are identical 
  (assuming a decoupled k.p Hamiltonian, i.e. a single-band 
  Hamiltonian).Note that the single-band definition of the oscillator strength does not 
  really make sense for a k.p calculation where the masses usually are 
  anisotropic, nonparabolic and are different on each grid point (due to 
  different materials and different strain tensors).For the calculation of the oscillator strength in a k.p calculation, 
  the user can specify suitable masses by overwriting the default entries:
 
 
  conduction-band-masses = 0.0665d0 
  0.0665d0 0.0665d0 ! Gamma band (only used for oscillator 
  strength in k.p)L band (ignored in k.p)1.32d0   0.15d0   0.15d0   !
X band 
  (ignored in k.p)0.97d0   0.22d0   0.22d0   !
heavy hole (only 
  used for oscillator strength in k.p)valence-band-masses    = 
  0.500d0  0.500d0  0.500d0  !
light hole (ignored in k.p)0.068d0  0.068d0  0.068d0  !
split-off hole (ignored in
  k.p)0.172d0  0.172d0  0.172d0  !
Of course, the masses that are used to calculate the k.p 
  eigenstates have to be specified via the 6-band and 8-band k.p parameters.
 
The intersubband dipole moments and the oscillator strenghts are contained in this 
  file:
   Schroedinger_kp/intraband_p1D_cb001_qc001_8x8kp_dir.txt 
  - Gamma conduction bandGamma conduction bandintraband_z1D_cb001_qc001_8x8kp_dir.txt 
  -
Note that the two-fold spin-degeneracy in single-band is counted 
  explicitely in k.p.
 
 -------------------------------------------------------------------------------(matrix element <1|1> depends on choice of origin!)Intersubband dipole moment  
	| < psi_f* | 
  z | psi_i > |  [Angstrom]
 Intersubband dipole moment  
	| 
  < psi_f* | p | psi_i > |  [h_bar / Angstrom]
 ------------------|------------------------------------------------------------
 Oscillator strength []
 ------------------|--------------|---------------------------------------------
 Energy of transition [eV]
 ------------------|--------------|--------------|------------------------------
 m* [m_0]
 ------------------|--------------|--------------|-----------|------------------
 <psi001*|z|psi001>  249.0000
 <psi002*|z|psi001>  
  249.0000      
  (matrix element <2|1> depends on choice of origin!)(matrix element 
	<1|1> independent of 
  origin)<psi001*|p|psi001>  
  1.8126842E-18
(matrix element <2|1> independent of origin)<psi002*|p|psi001>  1.8126842E-18
(The deviations from the single-band calculation are indicated
  in red.)
 <psi003*|z|psi001>  18.01673       
  0.9602799      0.1694912  6.6500001E-02
 <psi004*|z|psi001>  18.01673       
  0.9602799      0.1694912  6.6500001E-02
 <psi003*|p|psi001>  2.6649671E-02  0.9602798      
  0.1694912  6.6500001E-02
 <psi004*|p|psi001>  2.6649671E-02  0.9602798      
  0.1694912  6.6500001E-02
 
 <psi005*|z|psi001>  3.5382732E-13
 <psi006*|z|psi001>  3.5382732E-13
 <psi005*|p|psi001>  
  2.1414240E-15
 <psi006*|p|psi001>  2.1414240E-15
 
 <psi007*|z|psi001>  1.441336       
  3.0698583E-02  0.8466209  6.6500001E-02
 <psi008*|z|psi001>  1.441336       
  3.0698583E-02  0.8466209  6.6500001E-02
 <psi007*|p|psi001>  1.0649348E-02  3.0698583E-02  
  0.8466209  6.6500001E-02
 <psi008*|p|psi001>  1.0649348E-02  3.0698583E-02  
  0.8466209  6.6500001E-02
 
 <psi009*|z|psi001>  
  7.2598817E-13
 <psi010*|z|psi001>  7.2598817E-13
 <psi009*|p|psi001>  
  1.0445775E-14
 <psi010*|p|psi001>  1.0445775E-14
 
 <psi011*|z|psi001>  0.3971008      
  5.4281550E-03  1.972205   6.6500001E-02
 <psi012*|z|psi001>  0.3971008      
  5.4281550E-03  1.972205   6.6500001E-02
 <psi011*|p|psi001>  6.8347319E-03  
  5.4281550E-03  1.972205   
  6.6500001E-02
 <psi012*|p|psi001>  6.8347319E-03  
  5.4281550E-03  1.972205   
  6.6500001E-02
 
 ...
 <psi039*|z|psi001>  1.0178294E-02  
  3.9452352E-05  21.81846   6.6500001E-02
 <psi040*|z|psi001>  1.0178294E-02  
  3.9452352E-05  21.81846   6.6500001E-02
 <psi039*|p|psi001>  1.9380630E-03  
  3.9452349E-05  21.81846   
  6.6500001E-02
 <psi040*|p|psi001>  1.9380630E-03  
  3.9452349E-05  21.81846   
  6.6500001E-02
 
 Sum rule of oscillator strength: f_psi001 = 0.9994023
 Sum rule of oscillator strength: f_psi001 = 0.9994023
 
 
 We used:
 
  schroedinger-kp-ev-solv        
  = LAPACK-ZHBGVX   
  ! 'LAPACK', 'LAPACK-ZHBGVX', 
  'arpack', 
  'it_jam', 'chearn'schroedinger-kp-discretization = box-integration 
  ! 'finite-differences', 'box-integration'
 |