| binary-zb-defaultZinc blende material parametersFor materials which are not known to the database and for the use of nondefault values for some of the parameters of a known material.For totally unknown materials, all parameters must be specified in the input 
file. This will be required in very rare cases, however.
 In most cases it is possible, to use an unknown material 
name which can be associated to a known material type and to change only a few 
parameters by this keyword and its specifiers.
 More information can be found under the keyword 
$binary-zb-default 
under the section Database. !--------------------------------------------------------------!
 $binary-zb-default                                   
optional  !
  binary-type                         
character      
required  !
  binary-name                         
character      
optional  !
  apply-to-material-numbers           
integer_array   required  !
                                                                !
  conduction-bands                    
integer        
optional  ! total number of conduction bands
  conduction-band-masses              
double_array   
optional  ! [m0] 
ml,mt1,mt2 for each band. Ordering of numbers corresponds to band no. 1, 
2, ... (Gamma, L, X)
  conduction-band-degeneracies        
integer_array   optional  ! including spin degeneracy
  conduction-band-nonparabolicities   double_array   
optional  ! As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV)
  band-gaps                           
double_array   
optional  !
  conduction-band-energies            
double_array   
optional  ! conduction band edge energies relative to average valence band energy Ev,av
                                                                ! (number corrsponds to the ordering of the entries below)
  valence-bands                       
integer        
optional  ! total number of valence bands
  valence-band-masses                 
double_array   
optional  ! [m0] 
ml,mt1,mt2 for each band. Ordering of numbers corresponds to band no. 1, 
2, ... (hh, lh, so)
  valence-band-degeneracies           
integer_array   optional  ! including spin degeneracy
  valence-band-nonparabolicities      
double_array   
optional  ! As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV)
  valence-band-energies               
double         
optional  ! average valence band edge energy Ev,av
  varshni-parameters                  
double_array   
optional  ! 
alpha [eV/K] (Gamma,L,X), beta [K] (Gamma,L,X)to adjust band alignments (should be zero in database)band-shift                          
double         
optional  !
                                                                !
  absolute-deformation-potential-vb   double         
optional  !
  absolute-deformation-potentials-cbs double_array   
optional  ! absolute deformation potential of conduction band: a_cd, a_ci [eV]
  uniax-vb-deformation-potentials     
double_array   
optional  ! b,d [eV]
  uniax-cb-deformation-potentials     
double_array   
optional  !
                                                                !
  lattice-constants                   
double_array   
optional  ! [nm]
  lattice-constants-temp-coeff        
double_array   
optional  ! [nm/K]!
  elastic-constants                   
double_array   
optional  !
  piezo-electric-constants            
double_array   
optional  !
                                                                !
  static-dielectric-constants         
double_array   
optional  !
  optical-dielectric-constants        
double         
optional  !
                                                                !
  Luttinger-parameters                
double_array   
optional  !
  6x6kp-parameters                    
double_array   
optional  !
  8x8kp-parameters                    
double_array   
optional  !
                                                                
!
  LO-phonon-energy          
       
 double         
 optional  ! [eV]!
  number-of-minima-of-cband           
integer_array   optional  !
required for 'conduction-band-minima'
  conduction-band-minima              
double_array   
optional  !          
and 'principal-axes-cb-masses'
  principal-axes-cb-masses            
double_array   
optional  !
                                                                !
  number-of-minima-of-vband           
integer_array   optional  !
required for 'valence-band-minima'
  valence-band-minima                 
double_array   
optional  !          
and 'principal-axes-vb-masses'
  principal-axes-vb-masses            
double_array   
optional  !
                                                                !
                                                                !
 $end_binary-zb-default                               
optional  !
 !--------------------------------------------------------------!
   Syntaxbinary-type = character= 
GaAs-zb-default
If the string is a known
  material-type, the default parameters for this 
material type will be read from the database first. By specifying some of the 
parameters by the present keyword and specifiers, the defaults will be 
overwritten.If the string is not known to the database, you will be prompted for 
all of the material parameters. In this case you have to specify the relevant 
specifiers in
  
$material (material-model, 
material-type). If here a known material-type is specified, 
however, then not all material parameters are needed as the defaults are taken 
unless otherwise specified. See here for an example: 
$material
 binary-name = characterTo specify a name for the present new defined material.
 apply-to-material-numbers = integer1
integer2 integer3
...Apply new or partially changed material data to material numbers specified.
 
	Note: If you want to overwrite the parameters of a ternary, you 
	also have to include the associated material numbers of the ternary 
	here, i.e. in
$binary-zb-default.Consider this example:
 Assume that you have used the following materials in your input file:
 
 material number of ternary$material
 material-number = 1
 material-name   = GaN
 ...
 
 material-number = 2
 material-name   = In(x)Ga(1-x)N  
	!
 = 2Note that the material parameters of the ternary InGaN are 
	interpolated from its binary constituents InN and GaN....                               
	!
Then you have to overwrite the material parameters as follows.
 material-number = 3
 material-name   = InN
 ...
 
 
 Obviously, this overwrites the material parameters of material #$binary-zb-default
 binary-type = GaN-zb-default
 ! apply-to-material-numbers = 1   !
1which is GaN but not the GaN values of which the ternary 
	In(x)Ga(1-x)N (material #2) is calculated.
                                    
	! Therefore, for material #2, the default GaN values of the database 
	are used and not the ones specified in the input file.This overwrites the material parameters of material #apply-to-material-numbers = 1 2 
	!
1
	which is GaN and the GaN values of which the 
	ternary In(x)Ga(1-x)N (material #2) 
	is calculated.Obviously, this overwrites the material parameters of material #...
 
 $binary-zb-default
 binary-type = InN-zb-default
 ! apply-to-material-numbers = 3   !
3which is InN but not the InN values of which the ternary 
	In(x)Ga(1-x)N (material #2) is calculated.Therefore, for material #2, the default InN values of the database 
	are used and not the ones specified in the input file.!
This overwrites the material parameters of material #apply-to-material-numbers = 2 3 
	!
3
	which is InN and the InN values of which the 
	ternary In(x)Ga(1-x)N (material #2) 
	is calculated.This overwrites the material parameters (here: bowing parameters) 
	of the ternary material #...
 
 $binary-zb-default
 ternary-type = In(x)Ga(1-x)N-zb-default
 apply-to-material-numbers = 2   
	!
2which 
	is InGaN....
 
 conduction-bands = inttotal number of conduction band minima (Gamma, L, X)
 conduction-band-masses = m    m    m     
! Gamma 
                          
ml   mt   mt     
! Lare the masses in the principal axes system of the 
minima. These masses are associated to the eigenvectors of the minima in the 
order they are given in the parameter set.ml   mt   mt     
! X
 mij
For the L and X valleys, one longitudinal and two transverse masses are 
required.
   conduction-band-masses = 0.156d0 0.156d0 0.156d0 
! [m0] Gamma (m,m,m)3 numbers per band,
ordering of numbers corresponds to band 
no. 1, 2, 3 (Gamma, L, X)1.420d0 0.130d0 0.130d0 ! [m0] L     (mlongitudinal,mtransverse,mtransverse)
 0.916d0 0.190d0 0.190d0 ! [m0] X     (mlongitudinal,mtransverse,mtransverse)
 
 conduction-band-degeneracies = deg1 deg2 deg3As many degeneracy factors as mass triplets above.
 number-of-minima-of-cband = deg1 deg2 deg3Number of minima (without spin degeneracy) in each set of degenerate minima.
 conduction-band-minima   = v11 v12 v13
                            
v21 v22 v23
                            
v31 v32 v33
                           
...k vectors to individual conduction band minima in units of
  
[2pi/a] where a is the lattice constant.As many vectors (coordinate triplets in crystal coordinate system) as individual 
minima.
 Let's assume we have 3 conduction band minima 1,2,3 as specified above.
 These minima are
  deg1,deg2,deg3-fold degenerate. In this case, 
input for deg1/2+deg2/2+deg3/2 vectors has to be provided. The 
factor 1/2 is due to spin degeneracy which is already included in the degeneracy 
factors.Note: Currently it is assumed in parts of the program, that the ordering 
of the conduction minima is like
  1=Gamma  2=L  3=XNote:
number-of-minima-of-cband is required (!) for this specifier.
 principal-axes-cb-masses = a11 a12 a13
                            
b11 b12 b13
                            
c11 c12 c13
                        
    ........
 ....
 a21 a22 a23
                            
b21 b22 b23
                            
c21 c22 c23
                     
       ........
 ....
 a31 a32 a33
                            
b31 b32 b33
                            
c31 c32 c33
                      
      ........
 ....
Completely analog as
  conduction-band-minima, but this time 3 vectors 
for each individual minimum. The orderering of the principal axes is associated 
to the ordering of the conduction-band-masses.Note:
 number-of-minima-of-cband is required (!) for this specifier.
   conduction-band-nonparabolicities = a_Gamma a_L 
a_XNonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2.
 a = nonparabolicity
  [1/eV] (usually 
denoted with alpha)The energy of the 
Gamma valley is assumed to be nonparabolic, spherical, and of the form
 hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic) 
where a is given by a = (1 - m*/m0)2 / Eg.
 Eparabolic is the energy of the carriers in the usual 
parabolic band.
Enonparabolic is the energy of the carriers in the 
nonparabolic band.
The nonparabolic band factor a can be calculated from the Kane model.
Note that this nonparabolicity correction only influences the classically 
calculated electron densities.
 Quantum mechanically calculated densities are unaffected.
   band-gaps = e1  e2  e3  ! [eV]  Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used.Energy band gaps of the three valleys.
 conduction-band-energies = e1  e2  e3Absolute conduction band edge energies. One number for each set of degenerate 
minima.
 varshni-parameters = 0.5405d-3 0.605d-3 0.460d0 
! alpha [eV/K](Gamma, L, X) Vurgaftman(Gamma, L, X) 
Vurgaftman204d0     204d0    
204d0   ! beta  [K]
Temperature dependent band gaps (here: GaAs values).
More information...
 band-shift = doubleCan be used to rigidly shift all band energies by this amount.
 absolute-deformation-potential-vb   = double
 absolute-deformation-potentials-cbs = a_c_Gamma  
a_c_L  
a_c_X ! [eV] (Gamma, L, X)The absolute deformation potentials for the conduction band edges are 
  calculated from the band gap deformation potentials (a_gap) in the following 
  way:
a_gap = a_c - a_v      ->    a_c = 
  a_gap + a_v
 uniax-vb-deformation-potentials     =
b  d        
! [eV]
 uniax-cb-deformation-potentials     =
d1  d2  d3 ...
   lattice-constants            = 
0.543d0  0.543d0  0.543d0   
! [nm]   300 K3 positive numbers
 lattice-constants-temp-coeff = 3.88d-6  
3.88d-6  3.88d-6   ! [nm/K]More information on temperature dependent lattice constants...
   elastic-constants         =
c11  c12  c44Elastic constants
  c11,c12,c44 in [GPa] with their usual meaning.
 piezo-electric-constants  = e14            ! [C/m^2] 
e14            (1st   order coefficients)
                            
B114 B124 B156 ! [C/m^2] B114  B124  
B156
(2nd order coefficients)Conventionally, the sign of the piezoelectric tensor components is fixed by 
assuming that the positive direction along the
- [111] direction (zincblende)
 - [0001] direction (wurtzite)
 goes from the cation to the anion.
 For option
 
piezo-second-order 
= 4th-order-Tse-Pal
different parameters can be specified, see
$numeric-control.
   static-dielectric-constants = eps1  eps2
 eps3Static dielectric constants. The numbers 
correspond to the crystal directions (similar to
  lattice-constants):- in zinc blende:
  eps1 = eps2 
= eps3- in wurtzite:
     eps1 =
eps2   eps3is parallel to the c direction in wurtzite.eps3
               
eps1 and eps2 are perpendicular to the c direction in wurtzite.low frequency dielectric constant
 epsilon(0)
 optical-dielectric-constants = epshigh frequency dielectric constant
epsilon(infinity)
   Luttinger-parameters = gamma1  
gamma2  gamma3 ! [] Luttinger 
parameters for the valence band
                       
kappa   q             ! []In the database, the Luttinger parameters are defined for 6-band
k.p. i.e. not for 8-band k.p.
Note: The Luttinger parameters are only used if the following
 
$numeric-control flag is set:
   Luttinger-parameters = 
6x6kp  (or) yesmodified Luttinger 
parameters for the valence band= 
6x6kp-kappa
 =
6x6kp-kappa-only
 = 
8x8kp               
! []
modified Luttinger 
parameters for the valence band= 
8x8kp-kappa        
! []
modified Luttinger 
parameter kappa' for the valence band=
8x8kp-kappa-only    ! []
If
 kappa is not known it 
can be approximated: kappa = - N/6 + M/3 - 1/3. (This corresponds 
to H2 = 0, i.e. N- = M and N+
= N - M.)If
  gamma2= 
gamma3    , then the dispersion is isotropic (spherical 
approximation).If
  gamma2= 
gamma3 = 0, then the dispersion is isotropic (spherical 
approximation) and parabolic.
 6x6kp-parameters     = L       M       N     ! [hbar2/(2m0)]DeltaSO
! [eV]
 8x8kp-parameters     = L'      M'=M    N'   
! [hbar2/(2m0)]B       EP
S       ! [hbar2/(2m0)]   
[eV]           []
     Important: There are different definitions of the 
L and M parameters available in the literature. (The
gammas are called Luttinger parameters.)nextnano definition:
    L = ( - gamma1 
- 4gamma2 - 1 ) * [hbar2/(2m0)]
              
M = (  2gamma2 - gamma1  - 1 ) * [hbar2/(2m0)]alternative definition:
    L = ( - 
gamma1 - 4gamma2     ) * [hbar2/(2m0)]
              
M = (  2gamma2 - gamma1      
) * [hbar2/(2m0)]Note: The
 
 S
parameter is also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001).F = (S - 1)/2
 
 N = N+ + N-
 
For 6-band k.p, one can obtain an isotropic dispersion if
  
N2 - (L - M)2 = 0, i.e. N = L - M (spherical approximation).If
 L = M, and N = 0, the dispersion is both 
isotropic and parabolic.More information 
on k.p parameters...
 
   LO-phonon-energy = ELO,ph            
! [eV]   low-temperature optical phonon energy
   valence-bands                       
= integer
 valence-band-masses                 
= double_array
 valence-band-degeneracies           
= integer_array
 valence-band-nonparabolicities      = 
double_array  ! see comments for conduction-band-nonparabolicities
 valence-band-energies               
= doubleThe valence band energies for heavy, light and split-off holes are calculated by 
  defining an average valence band energy Ev,av for all three bands and adding the 
  spin-orbit-splitting energy afterwards. The spin-orbit-splitting energy Deltaso is 
  defined together with the k.p parameters.
The average valence band energy Ev,av is defined on an absolute 
energy scale and must take into account the valence band offsets which are 
averaged over the three holes.
 number-of-minima-of-vband           
= integer_array
 valence-band-minima                 
= double_array  ! Note:number-of-minima-of-vband is required (!) for this specifier.Note:principal-axes-vb-masses            
= double_array  !
number-of-minima-of-vband is required (!) for this specifier.Valence band parameters in complete analogy to conduction band parameters.
 More detailed information can be found
here. More information can be found under the keyword 
$binary-zb-default 
under the section Database. |