| binary-zb-defaultMore information can be found under the keyword
binary-zb-default (binary zinc blende parameters) under the section
Keywords. !------------------------------------------------------------!average valence band edge energy 
Ev,av$binary-zb-default                                
 required !
 binary-type character                            
 required !
 conduction-bands                   
integer        
required !
 conduction-band-masses            
 double_array  
required !
 conduction-band-degeneracies     
  integer_array  required !
 conduction-band-nonparabolicities 
  double_array   
required !
 band-gaps              
         
  double_array  
 optional !
 conduction-band-energies         
  double_array  
 required !
 valence-bands                    
  integer       
required !
 valence-band-masses               
 double_array   required !
 valence-band-degeneracies        
  integer_array  required !
 valence-band-nonparabolicities   
  double_array  
 required !
 valence-band-energies             
 double         required !
(Gamma,L,X),!
 varshni-parameters                  
double_array   required ! 
alpha [eV/K]
 beta [K] (Gamma,L,X)band-shift                       
  double        
required !
 absolute-deformation-potential-vb  
double         
required !
 absolute-deformation-potentials-cbs 
double_array 
 required !
 uniax-vb-deformation-potentials    
double_array   
required !
 uniax-cb-deformation-potentials    
 double_array   required !
 !
 lattice-constants                  
double_array   
required ! [nm]
 lattice-constants-temp-coeff        
double_array   required ! 
[nm/K]
 !
 elastic-constants                 
 double_array   
required !
 piezo-electric-constants          
 double_array   required !
 !
 static-dielectric-constants       
 double_array   required !
 optical-dielectric-constants      
 double        
 required !
 !
 Luttinger-parameters              
 double_array   required !
 6x6kp-parameters                  
 double_array   required !
 8x8kp-parameters                   
double_array   required !
 !
 LO-phonon-energy          
       
 double        
 required ! [eV]
 !
 number-of-minima-of-cband         
 integer_array  required !
 conduction-band-minima             
double_array   required !
 principal-axes-cb-masses          
 double_array   required !
 !
 number-of-minima-of-vband          
integer_array  
required !
 valence-band-minima                
double_array   
required !
 principal-axes-vb-masses           
double_array   required !
 !
 $end_binary-zb-default                             
required !
 !------------------------------------------------------------!
   Syntaxbinary-type = Si-zb-default
 conduction-bands = 3total number of conduction band minima (Gamma, L, X)
 conduction-band-masses = 0.156d0 0.156d0 0.156d0 
! [m0] Gamma (m,m,m)3 numbers per band,
ordering of numbers corresponds to band 
no. 1, 2, 3 (Gamma, L, X)1.420d0 0.130d0 0.130d0 ! [m0] L     (mlongitudinal,mtransverse,mtransverse)
 0.916d0 0.190d0 0.190d0 ! [m0] X     (mlongitudinal,mtransverse,mtransverse)
 
 conduction-band-degeneracies = 2 8 12including spin degeneracy
   conduction-band-nonparabolicities = 0d0   0d0   0d0  ! [1/eV]
Gamma, L , XNonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2.
a = nonparabolicity
  [1/eV] (usually 
denoted with alpha)The energy of the 
Gamma valley is assumed to be nonparabolic, spherical, and of the form
 hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic) 
where a is given by a = (1 - m*/m0)2 / Eg.
 Eparabolic is the energy of the carriers in the usual 
parabolic band.
Enonparabolic is the energy of the carriers in the 
nonparabolic band.
The nonparabolic band factor a can be calculated from the Kane model.
Note that this nonparabolicity correction only influences the classically 
calculated electron densities.
 Quantum mechanically calculated densities are unaffected.
   band-gaps = 1.5d0 2.0d0 2.3d0  ! [eV]  Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used.Energy band gaps of the three valleys (Gamma, L, X).
 conduction-band-energies = 0d0 0d0 0d0conduction band edge energies relative to a reference level (could be 
vacuum) (numbering according
to cb numbering)
conduction band edge energies relative to valence band number 1 (number 
corrsponds to the ordering of the entries below)
 valence-bands = 3total number of valence bands
 valence-band-masses = 0.580d0 0.580d0 0.580d0 
! [m0]
heavy holelight hole0.500d0 0.500d0 0.500d0 ! [m0]
split-off hole0.300d0 0.300d0 0.300d0 ! [m0]
Ordering of numbers corresponds 
to band no. 1, 2, 3 (heavy, light, split-off hole).
 valence-band-degeneracies = 2 2 2including spin degeneracy
   valence-band-nonparabolicities = 0d0     
0d0     0d0    ! [1/eV]
heavy, light, and split-off holesee comments for
 conduction-band-nonparabolicities
   valence-band-energies = 0.0The valence band energies for heavy, light and split-off holes are calculated by 
  defining an average valence band energy Ev,av for all three bands and adding the 
  spin-orbit-splitting energy afterwards. The spin-orbit-splitting energy Deltaso is 
  defined together with the k.p parameters.
The average valence band energy Ev,av is defined on an absolute 
energy scale and must take into account the valence band offsets which are 
averaged over the three holes.
 varshni-parameters = 0.5405d-3 0.605d-3 0.460d0 
! alpha [eV/K](Gamma, L, X) Vurgaftman(Gamma, L, X) 
Vurgaftman204d0     204d0    
204d0   ! beta  [K]
Temperature dependent band gaps (here: GaAs values).
More 
information...
 to adjust band alignments (should be zero in database): adds to all band 
energiesband-shift = 0d0
 
 absolute-deformation-potential-vb = 0d0a_v [eV]
 absolute-deformation-potentials-cbs =  
-10.44d0 -2.07d0 3.35d0  ! [eV] (Gamma, L, X) (Si values)The absolute deformation potentials for the conduction band edges are 
  calculated from the band gap deformation potentials (a_gap) in the following 
  way:
a_gap = a_c - a_v      ->    a_c = 
  a_gap + a_v
 uniax-vb-deformation-potentials = 0d0     
0d0b,d [eV]
 uniax-cb-deformation-potentials = 0d0     
0d0     0d0(at minimum)Xi_u
   lattice-constants            = 
0.543d0  0.543d0  0.543d0  ! [nm]   300 K3 positive numbers
 lattice-constants-temp-coeff = 3.88d-6  
3.88d-6  3.88d-6  ! [nm/K]More 
information on temperature dependent lattice constants...
   piezo-electric-constants = -0.350d0                  ! [C/m^2] 
e14                (1st 
 order coefficients)(2nd order coefficients)0d0     0d0      0d0      
! [C/m^2] B114  B124  B156
Conventionally, the sign of the piezoelectric tensor components is fixed 
by assuming that the positive direction along the
- [111] direction (zincblende)
 - [0001] direction (wurtzite)
 goes from the cation to the anion.
 elastic-constants        = 1d0     
1d0      1.350d0 !
c11    c12   c44  [GPa]
   static-dielectric-constants = 9.28d0 9.28d0 
9.28d0Static dielectric constants. The numbers 
correspond to the crystal directions (similar to
 lattice-constants):- in zinc blende:
  eps1 = eps2 
= eps3- in wurtzite:
    eps1 =
eps2   eps3
 eps3 is parallel to the c direction in wurtzite.
              
eps1 and eps2 are perpendicular to the c direction in wurtzite.low frequency dielectric constant
 epsilon(0)
 optical-dielectric-constants = 10.10d0  
! high frequency dielectric constant
epsilon(infinity)
   Luttinger-parameters =  6.98d0   
2.06d0   2.93d0  
! gamma1  gamma2  gamma3 [] Luttinger parameters for the valence band
                       
 1.72d0   0.04d0           ! 
kappa   q      []In the database, the Luttinger parameters are defined for 6-band k.p. i.e. not for 8-band k.p.
 Note: The Luttinger parameters are only used if the following
 
$numeric-control flag is 
set:(or)Luttinger-parameters = 
6x6kp
 yesmodified Luttinger 
parameters for the valence band= 
6x6kp-kappa
 =
6x6kp-kappa-only
 = 
8x8kp               
! []
modified Luttinger 
parameters for the valence band= 
8x8kp-kappa        
! []
modified Luttinger 
parameter kappa' for the valence band=
8x8kp-kappa-only    ! []
If
 kappa is not known it 
can be approximated: kappa = - N/6 + M/3 - 1/3. (This corresponds 
to H2 = 0, i.e. N- = M and N+
= N - M.)If
  gamma2= 
gamma3    , then the dispersion is isotropic (spherical 
approximation).If
  gamma2= 
gamma3 = 0, then the dispersion is isotropic (spherical 
approximation) and parabolic.
 6x6kp-parameters     = 
-16.22d0 -3.86d0 -17.58d0  
! L    M      N     
[hbar2/(2m0)]0.341d0                   
! Deltaso (spin-orbit split-off energy) [eV]
 8x8kp-parameters     =  
1.420d0 -3.86d0  0.056d0  
! L'   M'=M   N'    
[hbar2/(2m0)]0.0d0   28.8d0  -2.876d0  
! B  [hbar2/(2m0)]    
EP  [eV]    S []
     Important: There are different definitions of the 
L and M parameters available in the literature. (The
gammas are called Luttinger parameters.)nextnano definition:
    L = ( - gamma1 
- 4gamma2 - 1 ) * [hbar2/(2m0)]
              
M = (  2gamma2 - gamma1  - 1 ) * [hbar2/(2m0)]alternative definition:
    L = ( - 
gamma1 - 4gamma2     ) * [hbar2/(2m0)]
              
M = (  2gamma2 - gamma1      
) * [hbar2/(2m0)]Note: The
 
 S
parameter is also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001).For 6-band k.p, one can obtain an isotropic dispersion 
ifF = (S - 1)/2
 
 N = N+ + N-
 
 
 N2 - (L - M)2 = 0, i.e. N = L - M (spherical approximation).If
 L = M, and N = 0, the dispersion is both 
isotropic and parabolic.More information 
on k.p parameters...
 
   LO-phonon-energy = 0.063d0 ! [eV]  
low-temperature optical phonon energy
   number-of-minima-of-cband = 1 4 6
 conduction-band-minima = 0d0      0d0     
 0d0components of k-vector along crystal
 0.860d0  0.860d0  0.860d0
 0.860d0  0.860d0 -0.860d0
 -0.860d0  0.860d0  0.860d0
 -0.860d0  0.860d0 -0.860d0
 
 0d0      0d0     
 1d0
 1d0      0d0      0d0
 0d0      1d0      0d0
 0d0      0d0     -1d0
 -1d0      0d0      0d0
 0d0     -1d0      0d0
 
 
xyz [k0] in units of 
[2pi/a] where a is the lattice constant.
 Normalization will be done internally by the 
programprincipal-axes-cb-masses =  1d0      0d0     
 0d0      !
 0d0      1d0     
 0d0     
 !
 0d0      0d0     
 1d0     
 !
 !
 1d0     -1d0     
 0d0     ! L1
 1d0      1d0     
-2d0      !
 1d0      1d0     
 1d0     
 !
 1d0     -1d0     
 0d0      ! L2
 -1d0     -1d0     
-2d0      !
 1d0      1d0     
-1d0      !
 1d0      1d0      0d0     
 ! L3
 -1d0      1d0     
-2d0      !
 -1d0      1d0     
 1d0     
 !
 1d0      1d0      0d0     
 ! L4
 1d0     -1d0     -2d0      !
 -1d0      1d0     
-1d0      !
 !
 1d0      0d0     
 0d0     
 ! X1
 0d0      1d0      0d0     
 !
 0d0      0d0     
 1d0     
 !
 0d0     -1d0      
0d0      ! X2
 0d0      0d0     
-1d0     
!
 1d0      0d0     
 0d0     
!
 1d0      0d0     
 0d0     
 ! X3
 0d0      0d0     -1d0      !
 0d0     
 1d0      0d0     
 !
 -1d0      0d0     
 0d0     
 ! X4
 0d0     
 1d0      0d0     
 !
 0d0      0d0     
-1d0      !
 0d0      1d0     
 0d0     
 ! X5
 0d0      0d0     
-1d0      !
 -1d0      0d0     
 0d0     
 !
 -1d0      0d0     
 0d0     
 ! X6
 0d0      0d0     
-1d0      !
 0d0     -1d0     
 0d0      !
 
 number-of-minima-of-vband = 1 1 1
 valence-band-minima = 0d0     
0d0     0d0components of k-vector along crystal0d0     0d0     0d0
 0d0     0d0     0d0
 
 
xyz [k0]
 !Normalization will be done internally by the 
programprincipal-axes-vb-masses = 1d0     0d0     
0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 
 More information can be found under the keyword
binary-zb-default(binary zinc blende parameters) under the section
Keywords. |