| Which material parameters are used?Input material parametersExample: SiThere are basically two ways to introduce a new material to the simulator. If 
you need the material permanently, you can specify the parameters in the 
database, whereas if you only need it for a certain calculation you can add it 
to the input file. Both structures are exactly the same so that it makes no 
difference for the explanation. The example demonstrates the introduction of the zinc blende material silicon 
to the database. The parameters for the material are specified in the keyword
$binary-zb-default.  In this section the parameters are explained step by step and the important 
details are pointed out. The keyword looks like the following:  !---------------------------------------------------------------------!(GaAs value)$binary-zb-default
 binary-type                          
= Si-zb-default
 conduction-bands                     
= 3
 conduction-band-masses               
= 0.156d0 0.156d0 0.156d0
 0.130d0 0.130d0 1.420d0
 0.190d0 0.190d0 0.916d0
 conduction-band-degeneracies         = 
2       8       12
 conduction-band-nonparabolicities    = 
0d0     0d0     
0d0
 conduction-band-energies             
= -3.53d0 -5.28d0 -5.78d0
 valence-bands                        
= 3
 valence-band-masses                  
= 0.537d0 0.537d0 0.537d0
 0.153d0 0.153d0 0.153d0
 0.234d0 0.234d0 0.234d0
 valence-band-degeneracies            
= 2       2       2
 valence-band-nonparabolicities       = 
0d0     
0d0     0d0
 valence-band-energies                
= -6.93d0
 static-dielectric-constants          
= 12.93d0 12.93d0 12.93d0
 optical-dielectric-constants         
= 10.10d0
 varshni-parametes                    
= 0d0     0d0     
0d0
 0d0     0d0     0d0
 band-shift                           
= 0d0
 absolute-deformation-potential-vb    = 
2.05d0
 absolute-deformation-potentials-cbs  = -10.4d0 -2.07d0 3.35d0
 uniax-vb-deformation-potentials      = 
-2.33d0 
-4.75d0
 uniax-cb-deformation-potentials      = 
0d0     16.14d0 
9.16d0
 lattice-constants                    
= 0.543d0 0.543d0 0.543d0
 lattice-constants-temp-coeff        
 = 3.88d-6 3.88d-6 
3.8d-6  ! [nm/K]
piezo-electric-constants             
= 0d0     0d0     
0d0   0d0
 elastic-constants                    
= 16.57d0 6.393d0 7.962d0
 6x6kp-parameters                     
= -6.69d0 -4.62d0 -8.56d0
 0.044d0
 8x8kp-parameters                     
= -6.69d0 -4.62d0 -8.56d0
 0d0     0d0     1d0
 number-of-minima-of-cband            
= 1       4       
6
 conduction-band-minima               
= 0d0     0d0     
0d0
 
 0.860d0 0.860d0 0.860d0
 0.860d0 0.860d0 -0.86d0
 -0.86d0 0.860d0 0.860d0
 -0.86d0 0.860d0 -0.86d0
 
 0d0     0d0     1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0    -1d0
 -1d0     0d0     0d0
 0d0    -1d0     0d0
 
 principal-axes-cb-masses             
= 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 
 1d0    -1d0     0d0
 1d0     1d0    -2d0
 1d0     1d0     1d0
 1d0    -1d0     0d0
 -1d0    -1d0    -2d0
 1d0     1d0    -1d0
 1d0     1d0     0d0
 -1.00d0  1d0    -2d0
 -1.00d0  1d0     1d0
 1d0     1d0     0d0
 1d0    -1.00d0 -2d0
 -1.00d0  1d0    -1d0
 
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 0d0    -1.00d0  0d0
 0d0     0d0    -1d0
 1d0     0d0     0d0
 1d0     0d0     0d0
 0d0     0d0     1d0
 0d0    -1.00d0  0d0
 -1.00d0  0d0     0d0
 0d0     1d0     0d0
 0d0     0d0    -1d0
 0d0     1d0     0d0
 0d0     0d0    -1d0
 -1.00d0  0d0     0d0
 -1.00d0  0d0     0d0
 0d0    -1.00d0  0d0
 
 
 number-of-minima-of-vband            
= 1       1       1
 valence-band-minima                  
= 0d0     0d0     
0d0
 0d0     0d0     0d0
 0d0     0d0     0d0
 principal-axes-vb-masses             
= 1d0     0d0     
0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 $end_binary-zb-default
 !---------------------------------------------------------------------!
     
!---------------------------------------------------------------------!$default-materials
 material-name                        
= Si
 material-model                       
= binary-zb-default
 material-type                        
= Si-zb-default
   1. First of all a name for the material has to be provided. This is done 
by: 
  
    | binary-type | Si-zb-default |  
    |  | Name of material |                     
   2. Specify electronic structure of material:In this section the band structure of the material is defined including number 
of bands, number of minima, band edges and effective masses.
 Conduction bands: Number of conduction bands: 
  
    | conduction-bands                 | 3 |  
    |  | Number of conduction bands |  
  Number of nondegenerate conduction bands (minima).You are free to specify 
  more or less conduction bands than 3 but for the case of silicon three is 
  enough. Conduction band masses: 
  
    |  | 1. principal axis | 2. principal axis | 3. principal axis |  |  
    | conduction-band-masses  | 0.156d0 | 0.156d0 | 0.156d0 | 1. band (Gamma) |  
    | Unit:  [m0] (free 
    electron mass) | 1.420d0 | 0.130d0 | 0.130d0  | 2. band (L) |  
    |  | 0.916d0 | 0.190d0 | 0.190d0 | 3. band (X) |  
  The effective masses are defined in the principal axes 
  system of the minima (principal-axes-cb-masses). These masses are 
  associated to the eigenvectors of the minima in the order they are given in 
  the parameter set. The eigenvectors are specified by their coordinates in the 
  cartesian coordinate system of the crystal.
 ml, mt1, mt2 Degeneracy of conduction bands: 
  
    | conduction-band-degeneracies | 2 | 8 | 12 |  
    |  | Gamma band | L band | X (or DELTA) band |  
  The degeneracy includes the number of degenerate minima per band as well as 
  the twofold spin-degeneracy. Nonparabolicity parameters: 
  
    | conduction-band-nonparabolicities | 0d0     | 0d0     | 0d0     |  
    | Unit:   [1/eV] | Gamma band | L band | X (or DELTA) band |  
  As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity [1/eV] Conduction band energies: 
  
    | conduction-band-energies | -3.53d0 | -5.28d0 | -5.78d0  |  
    | Unit:   [eV] | Gamma band | L band | X (or DELTA) band |  
  The conduction band energies are the absolute energies for the band edges 
  within the model-solid-model. We take the values from the paper of
  Wei and Zunger for 
  the valence-band-energies. From this averaged value, we add the 
  energy gaps for Gamma, L and X respectively + 1/3 Deltaso 
  (split-off) as the averaged valence band energy is 1/3 Deltaso below the 
  valence band edge. The conduction band energies should be given for 0 Kelvin.
  Varshni parameters should be used to get the 
  conduction band energies for e.g. 300 K. See FAQ for details.   Valence bands: Number of valence bands: 
  
    | valence-bands                 | 3 |  
    |  | Number of valence bands |  
  Number of nondegenerate valence bands (minima). Within the 
  model-solid-model the number of valence band in zinc blende materials should 
  always be equal to three! Valence band masses: 
  
    |  | 1st principal axis | 2nd principal axis | 3rd principal axis |  |  
    | valence-band-masses  | 0.537d0 | 0.537d0 | 0.537d0 | 1. band (heavy hole) |  
    | Unit:  [m0] (free 
    electron mass) | 0.153d0 | 0.153d0 | 0.153d0  | 2. band (light hole) |  
    |  | 0.234d0  | 0.234d0  | 0.234d0  | 3. band (split-off) |  
  The effective masses are 
  defined in the principal axes system of the minima (principal-axes-vb-masses).By default only spherical masses for the valence bands have been implemented 
  into the database (i.e. the masses for all principal axes are equal.)
 If one 
  wants to include valence band warping the k.p calculation should be 
  used. Alternatively, the user can enter arbitrary effective-mass tensors into 
  the database.
 Degeneracy of valence bands: 
  
    | valence-band-degeneracies | 2 | 2 | 2 |  
    |  | heavy hole | light hole | split-off hole |  
  The degeneracy include the number of degenerate minima per band as well as 
  the twofold spin-degeneracy. Nonparabolicity parameters: 
  
    | valence-band-nonparabolicities | 0d0     | 0d0     | 0d0     |  
    | Unit:   [1/eV] | heavy hole | light hole | split-off hole |  
  As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity [1/eV] Valence band energies: 
  
    | valence-band-energies | -6.93d0 |  
    | Unit:   [eV] | average valence band energy |  
  The valence band energies for heavy, light and split-off holes are calculated by 
  defining an average valence band energy Ev,av for all three bands and adding the 
  spin-orbit-splitting energy afterwards. The spin-orbit-splitting energy Deltaso is 
  defined together with the k.p parameters.The average valence band energy Ev,av is defined on an absolute 
  energy scale and must take into account the valence band offsets which are 
  averaged over the three holes.
   3. Deformation potentials: Valence band absolute deformation potential: 
  
    | absolute-deformation-potential-vb | 2.05d0 |  
    | Unit:   [eV] | absolute deformation potential for 
    average valence band energy |  
  Within the model-solid theory there is only one absolute deformation 
  potential for the average valence band edge, all other band edges result from 
  relative changes. Note: In wurtzite this specifier is not used. Conduction band absolute deformation potentials: 
  
    | absolute-deformation-potentials-cbs | -10.4d0  | -2.07d0  | 3.35d0  |  
    | Unit:   [eV] | Gamma band | L band | X (or DELTA) band |  
  The absolute deformation potentials for the conduction band edges are 
  calculated from the band gap deformation potentials (agap) in the following 
  way: agap = ac -av      ->    ac 
  = agap + av Valence band uniaxial deformation potentials: 
  
    | uniax-vb-deformation-potentials | -2.33d0  | -4.75d0 |  |  
    | Unit:   [eV] | b | d |  |  
  For the valence band in zinc blende materials there are only two shear 
  deformation potentials b and d. Conduction band uniaxial deformation potentials: 
  
    | uniax-cb-deformation-potentials | 0d0     | 16.14d0  | 9.16d0  |  
    | Unit:   [eV] | Gamma band | L band | X (or DELTA) band |  
  Each conduction band has its uniaxial deformation potential which causes 
  degenerate minima to split. For the nondegenerate Gamma valley there is no uniaxial deformation potential.   4. Specify other material parameters: Static dielectric constants: 
  
    | static-dielectric-constants | 12.93d0 | 12.93d0 | 12.93d0 |  
    | Unit:   [eps_0] | [1 0 0] | [0 1 0] | [0 0 1] |  
static-dielectric-constants = 9.28d0 9.28d0 
10.01d0eps1   eps2
  eps3
Static dielectric constants. The numbers 
correspond to the crystal directions (similar to
  lattice-constants):- in zinc blende:
  eps1 = eps2 
= eps3- in wurtzite:
    eps1 =
eps2   eps3is parallel to the c direction in wurtziteeps3
              
eps1/eps2 is perpendicular to the c direction in wurtzitelow frequency dielectric constant
 epsilon(0)
 The static dielectric constant enters the Poisson 
equation.It is also needed to calculate the optical absorption and enters the equation 
for the exciton correction.
 
 Optical dielectric constant: 
  
    | optical-dielectric-constants | 10.10d0 |  
    | Unit:   [eps_0] |  |  
    Lattice constants: 
  
    | lattice-constants  | 0.543d0 | 0.543d0 | 0.543d0 |  
    | Unit:   [ l0] (l0is the internal 
    length unit specified in
    $input-scaling-factors; 
    default is 
    nm) | [1 0 0] | [0 1 0] | [0 0 1] |  
  In a cubic crystal system (like diamond and zinc blende), the lattice constants in all three crystal 
  axes are equal. 
  
    | lattice-constants-temp-coeff | 3.88d-6 | 3.88d-6 | 3.88d-6 |  
    | Unit:   [ l0/K] (l0is the internal 
    length unit specified in
    $input-scaling-factors; 
    default is 
    nm/K) | [1 0 0] | [0 1 0] | [0 0 1] |  
The lattice constant is temperature dependent. The lattice constant in the 
database should be given for 300 K. For all other temperatures, the lattice 
constant is calculated by the following formula: alc = alc(300 K) + b * (T - 300)
 b = lattice-constants-temp-coeff        
 = 3.88d-6  3.88d-6  
3.8d-6  ! [nm/K] (GaAs value)T = temperature
 The temperature dependent lattice constants can be switched off. See 
$numeric_control for more details. Example: group III nitridesAlN, GaN and InN have different thermal expansion coefficients which results in 
different strain values at different temperatures. This leads to a temperature 
dependent gradient of the polarization at interfaces and thus to different 
fields inside the barrier.
 Example: pseudomorphic AlGaN (6 %) on GaN: electric field at room temperature 
330 kV/cm
 at 5 K                      
110 kV/cm
 For wurtzite nitrides one can also fit it to a polynomium of degree 4 (between 
100 und 1000 K): 
  Y = A + B1*x + B2*x2 + B3*x3 + B4*x4 GaN: Parameter value error------------------------------------------------------------
 
 A   -2.02944E-6   1.7902E-7------------------------------------------------------------B1   4.19934E-8   1.96339E-9
 B2  -9.53432E-11  6.88747E-12
 B3   9.58787E-14  9.36883E-15
 B4  -3.52551E-17  4.29959E-18
 
 AlN: Parameter value error------------------------------------------------------------
 
 A   -2.31192E-6   6.68671E-8------------------------------------------------------------B1   2.67408E-8   7.3336E-10
 B2  -3.72491E-11  2.57259E-12
 B3   2.84248E-14  3.49942E-15
 B4  -9.11638E-18  1.60597E-18
 
 InN: At present difficult to specify as the material is currently revised 
  profoundly. Linear interpolation is not recommended for wurtzite nitrides, e.g. AlN has a 
negative expansion coefficient below 100 K. The lattice constants are needed for the calculation of 
the strain.   Elastic constants: 
  
    | elastic-constants | 165.7d0 | 63.93d0 | 79.62d0 |  
    | Unit:   [ prs0] (prs0is the 
    internal length unit specified in
    $input-scaling-factors; default 
    is GPa: 10^9 pa) | C11 | C12 | C44 |  
  1 * 1011 dyn/cm2 = 10 GPa   ->  11.8 
  * 1011 dyn/cm2 
  = 118 GPa The elastic constants are needed for the calculation 
  of the strain in heterostructures.   Piezoelectric constants: 
  
    | piezo-electric-constants |  |  |  |  |  
    | Unit:   [ C/m2] 
    (zinc blende) | e14 |  |  | (1st  order coefficient) |  
    |  | B114 | B124 | B156 | (2nd order coefficients) |  
    | Unit:   [ C/m2] 
    (wurtzite) | e33 | e31 | e15 | (1st  order coefficients) |  
    |  | ... |  |  | (2nd order coefficients) |  
  For zinc blende materials there is one relevant 1st order piezoelectric constant: 
  e14. For silicon and germanium there is no 
  piezoelectric effect at all, thus the constants are zero in this case. In 
  wurtzite there are three 1st order piezo constants: e33, e31,
  e15Conventionally, the sign of the piezoelectric tensor components is fixed by 
	assuming that the positive direction along the
 - [111] direction (zincblende)
 - [0001] direction (wurtzite)
 goes from the cation to the anion.
   k.p parameters: The k.p parameters are necessary even if no quantum mechanical 
calculation is performed because the valence band energies are calculated 
by diagonalizing the bulk k.p Hamiltonian. They also contain the spin-orbit 
coupling paramter Deltaso. 6-band k.p parameters: 
  
    | 6x6kp-parameters | -6.69d0 | -4.62d0 | -8.56d0 |  
    | Unit:   [kp_k^2_zb] (see 
    $input-scaling-factors) | L | M | N |  
    |  | 0.044d0 |  |  |  
    | Unit:   [eV] | Deltaso |  |  |  
  The 6-band k.p parameters are given in the Dresselhaus notation L, M and N in 
  default units of [hbar² / 2m0] The conversion from Luttinger to Dresselhaus 
  notation 
  works as follows: 
	Ldatabase = L 2m0/hbar2 
	= -   gamma1 - 4 gamma2 - 1Mdatabase = M 2m0/hbar2 =   
	2 gamma2 -   gamma1 - 1
 Ndatabase = N 2m0/hbar2 = - 6 
	gamma3
 
 If the units of the L, M and N parameters are not given in the above 
  defined defaults units of [hbar² / 2m0], the equations for the Luttinger parameters would read: 
	gamma1 = - 1/3 (L+2M) 2m0/hbar2 
	- 1gamma2 = - 1/6 (L-M)  2m0/hbar2
 gamma3 = - 1/6  N     2m0/hbar2
 
 Additionally to the k.p parameters the spin-orbit coupling parameter 
  Deltaso (split-off energy) is specified in this set.         Important: There are different definitions of the 
L and M parameters available in the literature. (The
  gammas are called Luttinger parameters.)nextnano³ definition:
  L = ( - gamma1 
- 4gamma2 - 1 ) * [hbar2/(2m0)] = A 
	- 1
             
M = (  2gamma2 - gamma1  - 1 ) * [hbar2/(2m0)] 
	= B - 1
N 
	= N                                        = 
	Calternative definition:
   L = ( - 
gamma1 - 4gamma2     ) * [hbar2/(2m0)] 
	= A
     
M = (  2gamma2 - gamma1      
) * [hbar2/(2m0)] = B
N 
	= N                                        
	= C
 L = F + 2G(Here,M = H1 + H2
 N = F - G + H1 - H2 = N+ + N-
 N+ = N - N- ~= N - M
 H2
	= 0 has been assumed.)(Here,N- = M
 H2
	= 0 has been assumed.)
 Operator odering: ki (N - M) kj + kj 
	M ki = ki N+ kj + kj 
	N- kiBulk:
          
	ki (N - M) kj + kj M ki = (N - M 
	+ M) kikj = N ki kj   8-band k.p parameters: 
  
    | 8x8kp-parameters | -6.69d0 | -4.62d0 | -8.56d0 |  
    | Unit:   [kp_k^2_zb] (see 
    $input-scaling-factors) | L' | M'=M | N' |  
    |  | 0d0  | 0d0  | 1d0  |  
    |  | B [hbar²/2m0] | EP [eV] | S [-] |  
  The 8-band k.p parameters consist of the corrected valence band 
  parameters L', M'=M and N' as well as the assymetry paramter B. The coupling 
  between conduction and valence bands is described by the matrix element EP and 
  the effective mass of the electron is S. L' = L + Ep / EgapM' = M
 N' = N + Ep / Egap
 S = 1/me - Ep (Egap + 2/3 
	Delta_so) / [ Egap
	( Egap + Delta_so) ]
 For exact definition and conversion of parameters:
  
  k.p-definiton We have prepared an 
  Excel sheet that calculates the parameters for the two different options:rescaled model: S=1 (K=0)
  ==> 
  Ep=? ==> 
  L', N', EPoriginal model (convergence problems for S < 0): Ep given
  
  ==> 
  S = ? ==> 
  L', N', EPNote: This Excel sheet probably still uses incorrect euqations for L' 
	and N'. (This has to be corrected.)
   Number of conduction band minima 
  
    | number-of-minima-of-cband | 1 | 4 | 6 |  
    |  | Gamma band | L band | X (or DELTA) band |  The number of minima per band is taken without spin-degeneracy   Position of conduction band minima:
 conduction-band-minima:
 
  
    | Gamma band |  0d0     |  0d0     |  0d0     |  
    |  |  |  |  |  
    | L band |  0.860d0 |  0.860d0 |  0.860d0 |  
    |  |  0.860d0 |  0.860d0 | -0.860d0 |  
    |  | -0.860d0 |  0.860d0 |  0.860d0 |  
    |  | -0.860d0 |  0.860d0 | -0.860d0 |  
    |  |  |  |  |  
    | X band |  0d0     |  0d0     |  1d0     |  
    |  |  1d0     |  0d0     |  0d0     |  
    |  |  0d0     |  1d0     |  0d0     |  
    |  |  0d0     |  0d0     | -1d0     |  
    |  | -1d0     |  0d0     |  0d0     |  
    |  |  0d0     | -1d0     |  0d0     |  The position of the minima in k-space is defined by 
this specifier. The coordinates are in units of [2pi/a] within the crystal 
coordinate system where a is the lattice constant.Note: Currently it is assumed in parts of the program, that the ordering 
of the conduction band minima is like
 1=Gamma
 2=L
 3=X
 
   Principal axes for conduction band masses:
 
  
    | principal-axes-cb-masses | 1d0     | 0d0      | 0d0      |  
    | Gamma band, 1st minimum | 0d0      | 1d0     | 0d0      |  
    |  | 0d0      | 0d0      | 1d0     |  The principal axis for the effective mass tensor are 
provided in this keyword. The units are not important because only the direction 
is.In this example only one minimum is given!
 Same for valence bands Please check the effective masses site for 
more details!!     (In a bulk semiconductor, both direct and indirect energy gaps in 
semiconductor materials are temperature-dependent quantities, with the 
functional form often fitted to the empirical Varshni form 
	Eg(T)  =  Eg (T=0)  -a T2  /  ( T + b) where alpha and beta are adjustable (Varshni) parameters. 
Although other, more physically justified and possibly quantitative accurate, 
functional forms have been proposed, they have yet to gain widespread 
acceptance. Consistent sets of Varshni parameters for all III-V materials were 
compiled in the paper by
Vurgaftman et al. The Varshni parameters can be switched off. See 
$numeric_control for more details. Note: In an alloy composed of two binary materials, the Varshi 
parameters are not interpolated linearly. For material no. 1, the 
conduction band energy is calculated taking into account the Varshni parameters 
for material no. 1, then the conduction band energy for material no. 2 is 
calculated taking into account the Varshni parameters for material no. 2. 
Finally the conduction band energy for the ternary is calculated by 
interpolating between the conduction band energies of material no 1. and no. 2 
including the bowing parameter for the conduction band energy (if it is 
different from zero).   How to deal with the review paper of Vurgaftman et al.
  Band parameters for III–V compound 
  semiconductors and their alloysI. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. 
  Appl. Phys. 89 (11), 5815 (2001)
 
  
    | Vurgaftman | units | meaning | nextnano3 | units | example (GaAs) |  
    | alc | Angstrom | lattice constant | lattice-constants | nm | 0.565325d0 |  
    |  |  |  |  |  |  |  
    | EgGamma | eV | band gap at Gamma point | conduction-band-energies |  |  |  
    | alpha(Gamma) | eV/K | Varshni band gap parameters | +1/3 Deltaso + averaged valence band |  | 0.5404d-3 |  
    | beta(Gamma) | K | Varshni band gap parameters | edge |  | 204d0 |  
    | EgL | eV | band gap at L point | conduction-band-energies |  |  |  
    | alpha(L) | eV/K | Varshni band gap parameters | +1/3 Deltaso + averaged valence band |  | 0.605d-3 |  
    | beta(L) | K | Varshni band gap parameters | edge |  | 204d0 |  
    | EgX | eV | band gap at X point | conduction-band-energies |  |  |  
    | alpha(X) | eV/K | Varshni band gap parameters | +1/3 Deltaso + averaged valence band |  | 0.460d-3 |  
    | beta(X) | K | Varshni band gap parameters | edge |  | 204d0 |  
    | Deltaso | eV | split-off energy gap | 6x6kp-parameters (Deltaso, 2nd 
    line) | eV | 0.341d0 |  
    |  |  |  |  |  |  |  
    | m*e(Gamma) |  | electron effective mass at Gamma point |  |  |  |  
    | m*l(L) |  | longitudinal electron effective mass at L point |  |  |  |  
    | m*t(L) |  | transverse electron effective mass at L point |  |  |  |  
    | m*DOS(L) |  | density of states (DOS) electron effective mass at L point |  |  |  |  
    | m*l(X) |  | longitudinal electron effective mass at X point |  |  |  |  
    | m*t(X) |  | transverse electron effective mass at X point |  |  |  |  
    | m*DOS(X) |  | density of states (DOS) electron effective mass at X point |  |  |  |  
    | m*SO |  | split-off hole mass |  |  |  |  
    |  |  |  |  |  |  |  
    | gamma1 |  | Luttinger parameters (GaAs 6.98) | 6x6kp-parameters |  | -16.22d0  -3.86d0  -17.58d0 |  
    | gamma2 |  | Luttinger parameters (GaAs 2.06) | see equation 
    to get L, M, N |  | to be put in 1 line (L, M, N) |  
    | gamma3 |  | Luttinger parameters (GaAs 2.93 | (see also 
    Excel sheet!) |  | 0.341d0 |  
    | kappa |  | see P. Lawaetz, PRB 4, 3460 (1971) |  |  |  |  
    | q |  | see P. Lawaetz, PRB 4, 3460 (1971) |  |  |  |  
    |  |  |  | 8x8kp-parameters |  | 1.4199d0  -3.86d0  0.0599d0 |  
    |  |  |  | (maybe rescalce Ep to get S=1) |  | to be put in 1 line (L', M', N') |  
    |  |  |  |  |  | 0.0d0  10.475d0  -2.876d0 |  
    |  |  |  |  |  | (B  EP  S) |  
    | Ep | eV | interband matrix element | goes into L', M, N' of 8x8kp |  |  |  
    | F |  | (interband matrix element) (1 + 2S = F) | Kane parameter (we use S instead) |  |  |  
    |  |  |  |  |  |  |  
    | VBO | eV | valence band offset |  |  |  |  
    | ac | eV | conduction band deformation potential | take Zunger's values (Diploma Thesis M. Sabathil) |  |  |  
    | av | eV | valence band deformation potential | take Zunger's values (Diploma Thesis M. Sabathil) |  |  |  
    | b | eV | shear deformation potentials | uniax-vb-deformation-potentials | eV | -1.6d0  -4.6d0   (b d) |  
    | d | eV | shear deformation potentials | uniax-vb-deformation-potentials | eV | b and d to be put in 1 line |  
    |  |  |  |  |  |  |  
    | c11 | GPa | elastic constants     (error 
    in Vurgaftman | elastic-constants | GPa | 122.1 |  
    | c12 | GPa | elastic constants     of 
    factor 10! | elastic-constants | GPa | 56.6 |  
    | c44 | GPa | elastic constants     except 
    nitrides) | elastic-constants | GPa | 60.0 |  Otherspiezo-electric constants = 0.16d0 ! [C/m2](see e.g. Landolt-Börnstein)e14
 static-dielectric-constants = 9.28d0 9.28d0 
10.01d0eps1   eps2
  eps3
Static dielectric constants. The numbers 
correspond to the crystal directions (similar to
  lattice-constants):- in zinc blende:
  eps1 = eps2 
= eps3- in wurtzite:
    eps1 =
eps2   eps3is parallel to the c direction in wurtziteeps3
              
eps1/eps2 is perpendicular to the c direction in wurtzitelow frequency dielectric constant
 epsilon(0) (see e.g. Landolt-Börnstein)
 optical-dielectric-constants = 10.94d0epsilon(infinity) (see e.g. Landolt-Börnstein)
 Useful internet sites showing material properties   Errata in Vurgaftman's paperThe c11, c22, c33 elastic constants are in Gdyn/cm2 rather than in GPa 
for the nonnitride materials and should be divided by a factor of 10. 
Fortunately, only their ratios enter most bandstructure calculations. The F parameter for zinc-blende InN should be -2.77.  In Table XI, the Gamma-valley and X-valley gaps for zinc-blende AlN are 
interchanged (although they are correct in the text), and the correct value for 
the F parameter in AlN is -0.76 (rather than 0.76 in the text). Luttinger parameter gamma3 for GaP should be 1.25 (rather than 2.93, the 
value for GaAs), and the X-valley and L-valley bowing parameters for GaPSb 
should be 1.7 eV instead of 2.7 eV. In Table XXVII, the correct values for the indirect-gap bowing parameters for 
GaPSb are: C(EgX)=1.7 eV and C(EgL)=1.7 
eV. The bowing factor for zinc blende GaAsN reads 20.4-100x rather than 120.4-100x 
(Table XXX). Errata/addenda will be published by the 
authors once they accumulated enough of these misprints and/or new info about 
some material systems (See note in reference 10 of second Vurgaftman paper (Vurgaftman2)).   How to add new specifiers for the zinc blende and wurtzite material 
parameters into the database
	database_nn3_keywords.valadd new specifier to zinc blende, wurtzite, bowing for zinc blende, bowing for 
	wurtzite
 
database_nn3.inenter material parameters for new specifier to all zinc blende, wurtzite, 
	bowing for zinc blende, bowing for wurtzite material parameters
 
 
keywords.valadd new specifier to zinc blende, wurtzite, bowing for zinc blende, 
	bowing for wurtzite
MODULE mod_type_binary_zb_dfltadd variable for new specifierMODULE mod_type_ternary_zb_dflt
 MODULE mod_type_binary_wz_dflt
 MODULE mod_type_ternary_wz_dflt
 
Generate a new module similar to, for instance,
 MODULE mod_op_dielc (optical-dielectric-constants)
MODULE module_out_in(To output material parameters, another specifier has to be added into
  
	keywords.val: 
	$output-material)
MODULE mod_default_zb_binary_modelsMODULE mod_default_wz_binary_models
 MODULE mod_default_zb_ternary_models
 MODULE mod_default_wz_ternary_models
 
MODULE mod_read_zb_binary_modelsMODULE mod_read_wz_binary_models
 MODULE mod_read_zb_ternary_models
 MODULE mod_read_wz_ternary_models
 MODULE mod_read_zb_quaternary_models
 
 |