| nextnano3 - Tutorialnext generation 3D nano device simulator3D TutorialEnergy levels in idealistic 3D cubic and cuboidal shaped quantum dotsAuthor:
Stefan Birner If you want to obtain the input files that are used within this tutorial, please 
check if you can find them in the installation directory.If you cannot find them, please submit a
Support Ticket.
 
 -> 3DcubicQD.in  -
10 nm x 10 nm x 10 nm QD
 -> 3DcuboidQD.in -
10 nm x 10 nm x   5 nm QD 
 Energy levels in an idealistic 3D cubic quantum dot
-> 3DcubicQD.in  -
10 nm x 10 nm x 10 nm QD Here, we want to calculate the energy levels and the wave functions of a cubic 
quantum dot of length 10 nm. We assume that the barriers at the QD boundaries are infinite. This way we 
can compare our numerical calculations to analytical results.The potential inside the QD is assumed to be 0 eV.
 As effective mass we take the electron effective mass of InAs, i.e. me 
= 0.026 m0.
  conduction-band-masses = 0.026  0.026  0.026  ! electron 
effective mass at Gamma conduction band...
   A discussion of the analytical solution of the 3D Schrödinger equation of a 
particle in a box (i.e. quantum dot) with infinite barriers can be found in e.g.Quantum Heterostructures (Microelectronics and Optoelectronics) by V.V. 
Mitin, V.A. Kochelap and M.A. Stroscio.
 The solution of the Schrödinger equation leads to the following eigenvalues: 
  En1,n2,n3 = hbar2 pi2 
  / 2me               
  ( n12 / Lx2 + n22
  / Ly2 +  n32 / Lz2 
  ) = = 
  1.4462697 * 10-17 eVm2 ( n12
  / Lx2 + n22 / Ly2 
  +  n32 / Lz2 ) =
 = 
  0.1446269  eV               
  ( n12         
   + n22        
  +  n32         
  )           (if Lx 
  = Ly = Lz = 10 nm)
 
  En1,n2,n3 is the total electron energy.n1, n2, n3 
  are three discrete quantum numbers (because we have three 
  directions of quantization).Lx, Ly, Lz are the lengths along the x, y 
  and z directions. In our case, Lx = Ly = Lz = 
  10 nm. Generally, the energy levels are not degenerate, i.e. all energies are 
different.However, some energy levels with different quantum numbers coincide, if 
the lengths along two or three directions are identical or
 if their ratios are integers. In our cubic QD case, all three lengths are 
identical.
 Consequently, we expect the following degeneracies:
 
  E111 = 0.43388 eV (ground state)E112 = E121 = E211 = 0.86776 eV = 2 E111E122 = E212 = E221 = 1.30164 eV = 3 E111E113 = E131 = E311 = 1.59090 eV = 11/3 E111E222 = 1.73552 eV = 4 E111E123 = E132 = E213 = E231 = E312 
  = E321 = 2.02478 eV = 14/3 E111E333 = 3.90493 eV = 27/3 E111 nextnano³ numerical results for a 10 nm cubic quantum dot with 0.50 nm 
grid spacing:(The grid spacing is rather coarse but has the advantage that the calculation 
takes only a minute.)
 Output file name: 
Schroedinger_1band/ev_cb1_sg1_deg1.dat  num_ev: eigenvalue [eV]:= E111(0.50 nm grid)
 1      0.432989
(three-fold degenerate)2      0.862425
 E112/E121/E211(three-fold degenerate)3      0.862425
 E112/E121/E211(three-fold degenerate)4      0.862425
 E112/E121/E211(three-fold degenerate)5      1.291860
 E122/E212/E221(three-fold degenerate)6      1.291860
 E122/E212/E221(three-fold degenerate)7      1.291860
 E122/E212/E221(three-fold degenerate)8      1.566392
 E113/E131/E311(three-fold degenerate)9      1.566392
 E113/E131/E311(three-fold degenerate)10      1.566392
 E113/E131/E311= E22211      1.721296
(six-fold degenerate)12      1.995828
  E123/E132/E213/E231/E312/E321(six-fold degenerate)13      1.995828
  E123/E132/E213/E231/E312/E321(six-fold degenerate)14      1.995828
  E123/E132/E213/E231/E312/E321(six-fold degenerate)15      1.995828
  E123/E132/E213/E231/E312/E321(six-fold degenerate)16      1.995828
  E123/E132/E213/E231/E312/E321(six-fold degenerate)17      1.995828
  E123/E132/E213/E231/E312/E321(three-fold degenerate)18      2.425263
 E223/E232/E322(three-fold degenerate)19      2.425263
 E223/E232/E322(three-fold degenerate)20      2.425263
 E223/E232/E322(three-fold degenerate)21      2.527557
 E114/E141/E411(three-fold degenerate)22      2.527557
 E114/E141/E411(three-fold degenerate)23      2.527557
 E114/E141/E411(three-fold degenerate)24      2.699795
 E233/E323/E332(three-fold degenerate)25      2.699795
 E233/E323/E332(three-fold degenerate)26      2.699795
 E233/E323/E332(six-fold degenerate)27      2.956993
  E124/E142/E214/E241/E412/E421(six-fold degenerate)28      2.956993
  E124/E142/E214/E241/E412/E421(six-fold degenerate)29      2.956993
  E124/E142/E214/E241/E412/E421(six-fold degenerate)30      2.956993
  E124/E142/E214/E241/E412/E421(six-fold degenerate)31      2.956993
  E124/E142/E214/E241/E412/E421(six-fold degenerate)32      2.956993
  E124/E142/E214/E241/E412/E421= E333...
 48      3.833198
  ...
   The following figures show the isosurfaces of the electron wave function 
(psi²) of a 10 nm cubic quantum dot with infinite barriers for
  - the ground state E111
  - the 11th eigenstate E222.Both states are nondegenerate.
 
 
   
  
Intraband (=intersublevel) transitions
 $output-1-band-schroedingercalculate intersublevel dipole moment < psif* | pz  | psii 
  > and oscillator strength ffi...
 intraband-matrix-elements = p    
!
 
In this cubic QD with infinite barriers, optical intersublevel 
transitions are only allowed between states with odd difference 
quantum numbers along the same axes:E111
  <==> E112/E121/E211       
1  <==>  2 /  3 /  4E111
  <==> E114/E141/E411       
1  <==> 21 / 22 / 23E211
 <==> E311               
2  <==>  8E121
  <==> E131               
3  <==>  9E112
  <==> E113               
4  <==> 10...
 
The following transitions are forbidden:E111
  <==> E113/E131/E311       
1  <==>   8 /  9 / 10E211
  <==> E112/E121           
2  <==>   3 / 4E121
  <==> E211/E112           
3  <==>   2 / 4E112
  <==> E211/E121           
4  <==>   2 / 3
 ... 
  Energy levels in an idealistic 3D cubodial shaped quantum dot with Lx 
= Ly /= Lz
-> 3DcuboidQD.in -
10 nm x 10 nm x   5 nm QD This time we use a similiar quantum dot as above but the lengths are Lx 
= Ly = 10 nm and Lz = 5 nm. Therefore, the degeneracies of the eigenenergies are different. We expect the 
following: 
  En1,n2,n3 = hbar2 pi2 
  / 2me               
  ( n12 / Lx2 + n22
  / Ly2 +  n32 / Lz2 
  ) = = 
  1.4462697 * 10-17 eVm2 ( n12
  / Lx2 + n22 / Ly2 
  +  n32 / Lz2 ) =
 = 
  0.1446269  eV               
  ( n12         
   + n22 )  +  0.5785079 eV 
  n32         )           
  (if Lx = Ly = 10 nm and Lz = 5 nm)
 Generally, the energy levels are not degenerate, i.e. all energies are 
different.However, some energy levels with different quantum numbers coincide, if 
the lengths along two or three directions are identical or
 if their ratios are integers. In our cubic QD case, all three lengths are 
identical.
 Consequently, we expect the following degeneracies:
 
  E111 = 0.86776 eV (ground state)E121 = E211 = 1.301642 eVE221 = 1.73552 eV = 2 E111    (This 
  is a coincidence because Lx,y / Lz are integers and have 
  the value 2.)E131 = E311 = 2.02478 eVE231 = E321 = 2.45866 eVE112 = 2.60329 eV = 2 E121    (This 
  is a coincidence because Lx,y / Lz are integers and have 
  the value 2.)E122 = E212 =E141 = E411 = 3.03717 eV       
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)
E331 = 3.18180 eVE222 = 2 E221 =                      
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)E241 = E421    = 3.47105 eV    
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)
E132 = E312 = 3.76030 eVE341 = E431 =E232 = E322 = 4.19418 eV      
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)
E151 = E511 = 4.33881 eVE142 = E412 =E251 = E521 = 4.77269 eV      
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)
E332 = 4.91731 eVE441 =E242 = E422 = 5.20657 eV      
  (This is a coincidence because Lx,y / Lz are integers 
  and have the value 2.)
E113 = 5.49582 eVE123 = E213 = 5.92971 eV nextnano³ numerical results for a 10 nm cubic quantum dot with
  - 0.50 nm grid spacing (left   column) and
  - 0.25 nm grid spacing (right column):(The grid spacing is rather coarse (for 0.50 nm) but has the advantage that the 
calculation takes only a minute.)
 Output file name: 
Schroedinger_1band/ev_cb1_qc1_sg1_deg1.dat  num_ev: eigenvalue [eV]:= E111(0.50 nm grid)       
(0.25 nm grid)
 1      0.862425            
0.866424
(two-fold degenerate) = E121/E2112      1.291860            
1.299191
(two-fold degenerate) = E121/E2113      1.291860            
1.299191
= E2214      1.721296            
1.731958
(two-fold degenerate) = E131/E3115      1.995828            
2.017504
(two-fold degenerate) = E131/E3116      1.995828            
2.017504
(two-fold degenerate) = E231/E3217      2.425263           
 2.450270
(two-fold degenerate) = E231/E3218      2.425263           
 2.450270
= E1129      2.527557            
2.584167
(four-fold degenerate) = E122/E212/E141/E41110      2.956993            
3.016933
(four-fold degenerate) = E122/E212/E141/E41111      2.956993            
3.016933
(four-fold degenerate) = E122/E212/E141/E41112      2.956993            
3.016933
(four-fold degenerate) = E122/E212/E141/E41113      2.956993            
3.016933
= E33114      3.129231            
3.168583
(three-fold degenerate) = E222/E241/E42115      3.386428            
3.449700
(three-fold degenerate) = E222/E241/E42116      3.386428            
3.449700
(three-fold degenerate) = E222/E241/E42117      3.386428            
3.449700
(two-fold degenerate) = E132/E31218      3.660960             
3.735246
(two-fold degenerate) = E132/E31219      3.660960             
3.735246
(four-fold degenerate) = E341/E431/E232/E32220      4.090396             
4.168013
(four-fold degenerate) = E341/E431/E232/E32221      4.090396             
4.168013
(four-fold degenerate) = E341/E431/E232/E32222      4.090396             
4.168013
(four-fold degenerate) = E341/E431/E232/E32223      4.090396             
4.168013
(two-fold degenerate) = E151/E51124      4.151688             
4.291319
(two-fold degenerate) = E151/E51125      4.151688             
4.291319
(four-fold degenerate in theory) = E142/E412/E251/E52126      4.581124
            4.724086
(four-fold degenerate in theory) = E142/E412/E251/E52127      4.581124            
4.724086
(four-fold degenerate in theory) = E142/E412/E251/E52128      4.622125            
4.734676
(four-fold degenerate in theory) = E142/E412/E251/E52129      4.622125            
4.734676
= E33230      4.794363             
4.886326
= E441...
 34      5.121061             
5.400036
...
 
  
The following figures show the isosurfaces of the electron wave function (psi²) 
of a 10 nm x 10 nm x 5 nm cuboidal shaped quantum dot with infinite barriers for
  - the ground state E111
  - the   4th eigenstate E221the   9th eigenstate E112-
  - the 14th eigenstate E331.All these states are nondegenerate.
 
 
   
   
 |