binary-wz-default
Wurtzite material parameters
More information can be found under the keyword
binary-wz-default (binary wurtzite parameters) under the section
Keywords.
!-------------------------------------------------------------------!
$binary-wz-default
required !
binary-type
character
required !
conduction-bands
integer
required ! total number of conduction bands
conduction-band-masses
double_array required
! [m0] for each band. Ordering of numbers corresponds to band no. 1, 2, ...
conduction-band-degeneracies
integer_array required ! including
spin
degeneracy
conduction-band-nonparabolicities
double_array
required ! As used in a
hyperbolic dispersion k^2 ~ E(1+aE) . a = nonparabolicity (1/eV)
band-gaps
double_array optional !
conduction-band-energies
double_array required !
conduction band edge energies relative to a reference level (could be vacuum) (numbering according cb
numbering
!
valence-bands
integer
required ! total number of valence bands
valence-band-masses
double_array required !
[m0] mxx , myy , mzz for each band
(heavy, light and crystal-field split-off hole). Ordering of numbers corresponds to band
no. 1,
2, ...
valence-band-degeneracies
integer_array required ! including
spin
degeneracy
valence-band-nonparabolicities
double_array required ! As used in a
hyperbolic dispersion k^2 ~ E(1+aE) . a = nonparabolicity (1/eV)
valence-band-energies
double required
! "average" valence band edge energy Ev (see
comments below)
!
varshni-parameters
double_array
required ! alpha [eV/K]
(Gamma,indirect,indirect), beta [K]
(Gamma,L,indirect,indirect)
band-shift
double
required ! to adjust band alignments (should be zero in database): adds to all
band energies
!
absolute-deformation-potential-vb
double
required ! not used in wurtzite
absolute-deformation-potentials-cbs
double_array required ! absolute
deformation potentials of conduction band minima a_c, a_ci's
!
uniax-vb-deformation-potentials
double_array required ! b,d
related [eV]
uniax-cb-deformation-potentials
double_array required ! not used in wurtzite
!
lattice-constants
double_array required !
[nm] 3 positive
numbers
lattice-constants-temp-coeff
double_array
required ! [nm/K]
!
elastic-constants
double_array
required !
piezo-electric-constants
double_array
required !
pyro-polarization
double_array
required ! 3 numbers
!
static-dielectric-constants
double_array required !
optical-dielectric-constants
double_array
required !
!
6x6kp-parameters
double_array
required !
8x8kp-parameters
double_array required !
!
LO-phonon-energy
double_array
required ! [eV]
!
number-of-minima-of-cband
integer_array required !
conduction-band-minima
double_array required !
principal-axes-cb-masses
double_array
required !
!
number-of-minima-of-vband
integer_array required !
valence-band-minima
double_array required !
principal-axes-vb-masses
double_array required !
!
$end_binary-wz-default
required !
!-------------------------------------------------------------------!
Syntax
binary-type = GaN-wz-default
conduction-bands = 3
total number of conduction bands
conduction-band-masses = 0.202d0 0.202d0 0.206d0 !
[m0] masses at the Gamma point m_|_, m_|_, m||
(with respect to c-axis)
0.330d0 0.330d0 1.430d0 !
[m0] masses at the indirect ??? point
0.280d0 0.280d0 2.170d0 !
[m0]
masses at the indirect ??? point
conduction-band-degeneracies = 2 8 6
including spin degeneracy
conduction-band-nonparabolicities = 0.6d0 0.2d0 0.3d0
Nonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2.
a = nonparabolicity [1/eV] (usually
denoted with alpha)
The energy of the
Gamma valley is assumed to be nonparabolic, spherical (CHECK: is this also true
for wurtzite?), and of the form
hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic)
where a is given by a = (1 - m*/m0)2 / Eg.
Eparabolic is the energy of the carriers in the usual
parabolic band.
Enonparabolic is the energy of the carriers in the
nonparabolic band.
The nonparabolic band factor a can be calculated from the Kane model.
Note that this nonparabolicity correction only influences the classically
calculated electron densities.
Quantum mechanically calculated densities are unaffected.
band-gaps = 1.5d0 2.0d0 2.3d0 ! [eV]
Note that this flag is optional. It is only used if the flag use-band-gaps
= yes is used.
Energy band gaps of the three valleys (Gamma, ?, ?).
conduction-band-energies = 3.500d0 10.00d0 10.00d0
conduction band edge energies relative to valence band number 1 (number
corrsponds to the ordering of the entries below)
valence-bands = 3
total number of valence bands
valence-band-masses = 0.370d0 0.370d0 2.090d0 !
[m0] heavy hole (HH) masses m_|_, m_|_, m||
(with respect to c-axis)
0.390d0 0.390d0 0.740d0
! [m0]
light hole (LH) masses m_|_, m_|_, m||
(with respect to c-axis)
0.940d0 0.940d0 0.180d0 !
[m0] crystal-field split-hole (CH) masses m_|_, m_|_,
m|| (with respect to c-axis)
Ordering of numbers corresponds
to band no. 1, 2, 3 (heavy, light, crysta-field split-off hole).
valence-band-degeneracies = 2 2 2
including spin degeneracy
valence-band-nonparabolicities = 0.0d0 0.0d0 0.0d0
see comments for conduction-band-nonparabolicities
valence-band-energies = 0.0
The "average" valence band edge energy is according to Ev in:
S.L. Chuang, C.S. Chang
k.p method for strained wurtzite semiconductors
Phys. Rev. B 54 (4), 2491 (1996)
The valence band energies for heavy hole (HH), light hole (LH) and
crystal-field split-hole (CH) are calculated by
defining an "average" valence band energy Ev for all three bands and adding the
spin-orbit-splitting and crystal-field splitting energies afterwards.
The crystal-field splitting energy Deltacr and the
spin-orbit-splitting energies Delta2 = Delta3 = 1/3 Deltaso
are defined together with the 6-band k.p parameters.
The "average" valence band energy Ev is defined on an absolute
energy scale and must take into account the valence band offsets which are "averaged" over the three holes.
Note: The real average of the three holes is: Ev,av =
(EHH + ELH + ECH ) / 3 = Ev + 2/3 Deltacr
varshni-parameters = 0.909d-3 0d0 0d0
!
alpha [eV/K] (Gamma, indirect, indirect) Vurgaftman
830d0 0d0 0d0 ! beta
[K] (Gamma, indirect, indirect) Vurgaftman
Temperature dependent band gaps (here: GaN values).
More
information...
band-shift = 0d0
to adjust band alignments (should be zero in database): adds to all band
energies
absolute-deformation-potential-vb = 0.0d0
! a_v [eV] -
not used in wurtzite
Absolute deformation potential of valence bands.
absolute-deformation-potentials-cbs = ac,a (a axis) ac,a (a axis)
ac,c (c axis) ! [eV]
= -10.0d0 -10.0d0 -5.0d0 ! [eV]
absolute deformation potentials of Gamma conduction band minima
ac,a=a2 (a axis),
ac,a=a2 (a axis), ac,c=a1 (c
axis)
Note that I. Vurgaftman et al., JAP 94, 3675 (2003) lists
a1 and a2
parameters.
They refer to the interband deformation potentials, i.e. to the
deformation of the band gaps.
Thus we have to add the deformation potentials of the valence bands to get
the deformation potentials for the conduction band edge.
ac,a = a2
= a2 + D2
ac,c = a1
= a1 + D1
uniax-vb-deformation-potentials = -3.7d0
4.5d0 8.2d0 ! D1, D2, D3 [eV]
-4.1d0 -4.0d0 -5.5d0 ! D4, D5, D6 [eV]
Uniaxial deformation potentials of valence bands.
uniax-cb-deformation-potentials = 0d0
0d0 0d0 ! not used in wurtzite
Uniaxial deformation potentials of conduction bands.
Xi_u (at minimum)
lattice-constants =
0.3189d0 0.3189d0 0.5185d0
! [nm] 300 K
= a a
c
3 positive numbers
For the ideal c/a ration it holds: c/a = SQRT(8/3) = 1.63299...
lattice-constants-temp-coeff = 3.88d-6
3.88d-6 3.88d-6 ! [nm/K]
More
information on temperature dependent lattice constants...
elastic-constants = 374.0d0 106.0d0 70.0d0
! C11,C12,C13
379.0d0 101.0d0
! C33,C44
Elastic constants C11,C12,C13,C33,C44 in [GPa] with their usual
meaning.
(C66 is not needed as it can be calculated. C66 = 0.5 * (C11
- C12) .)
piezo-electric-constants = 0.73d0 -0.49d0 -0.30d0
! [C/m^2] e33 e31 e15
(1st order coefficients)
0d0 0d0 0d0 0d0 0d0 0d0 0d0 0d0 ! [C/m^2] B311
B312 B313 B333 B115
B125 B135 B344
(2nd order coefficients)
Conventionally, the sign of the piezoelectric tensor components is fixed
by assuming that the positive direction along the
- [111] direction (zincblende)
- [0001] direction (wurtzite)
goes from the cation to the anion.
pyro-polarization = 0d0 0d0 -0.029d0
! [C/m^2] 0d0 0d0 Psp
static-dielectric-constants = 9.28d0 9.28d0
10.01d0
eps1 eps2
eps3
Static dielectric constants. The numbers
correspond to the crystal directions (similar to lattice-constants ):
- in zinc blende: eps1 = eps2
= eps3
- in wurtzite: eps1 =
eps2 eps3
eps3
is parallel to the c direction in wurtzite.
eps1 and eps2 are perpendicular to the c direction in wurtzite.
low frequency dielectric constant
epsilon(0)
optical-dielectric-constants = 5.35d0 5.35d0 5.35d0 ! high frequency dielectric constant
epsilon(infinity); perpendicular and parallel to c axis
6x6kp-parameters = -7.21d0 -0.44d0 6.68d0
! 6-band k.p Rashba-Sheka-Pikus
parameters
-3.46d0 -3.40d0 -4.90d0 ! 6-band k.p Rashba-Sheka-Pikus parameters
0.010d0 0.00567d0 0.00567d0 ! Delta1 Delta2 Delta3
[eV]
8x8kp-parameters = -7.21d0 -0.44d0 6.68d0
! 8-band k.p Rashba-Sheka-Pikus
parameters
-3.46d0 -3.40d0 -4.90d0 !
8-band k.p Rashba-Sheka-Pikus parameters
0d0 0d0 0d0
! B1 B2 B3 [hbar2/(2m0)]
14.5d0 14.5d0
! EP1 EP2 [eV]
1d0 1d0
! S1 S2 []
Note: The S
parameters are also defined in the literature as F
where S = 1 + 2F , e.g. I. Vurgaftman et al., JAP 89,
5815 (2001).
LO-phonon-energy = 0.09212d0 0.09212d0 0.09113d0
! [eV] low-temperature optical phonon energy (perpendicular,
perpendicular, parallel to c axis)
number-of-minima-of-cband = 1 4 3
conduction-band-minima = 0d0
0d0 0d0
0.860d0 0.860d0 0.860d0
0.860d0 0.860d0 -0.860d0
-0.860d0 0.860d0 0.860d0
-0.860d0 0.860d0 -0.860d0
0d0 0d0
1d0
1d0 0d0 0d0
0d0 1d0 0d0
components of k-vector along crystal
xyz [k0]
principal-axes-cb-masses = 1d0
0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
!c
1d0 -1d0
0d0 ! L1
1d0 1d0
-2d0
1d0 1d0 1d0
1d0 -1d0 0d0 ! L2
-1d0 -1d0 -2d0
1d0 1d0 -1d0
1d0 1d0 0d0 ! L3
-1d0 1d0
-2d0
-1d0 1d0 1d0
1d0 1d0 0d0 ! L4
1d0 -1d0 -2d0
-1d0 1d0 -1d0
!c
1d0 0d0
0d0 ! X1
0d0 1d0
0d0
0d0 0d0 1d0
0d0 -1d0 0d0 ! X2
0d0 0d0
-1d0
1d0 0d0 0d0
1d0 0d0 0d0
! X3
0d0 0d0
-1d0
0d0 1d0 0d0
Normalization will be done internally by the
program
number-of-minima-of-vband = 1 1 1
valence-band-minima = 0d0
0d0 0d0
0d0 0d0 0d0
0d0 0d0 0d0
components of k-vector along crystal xyz
[k0]
principal-axes-vb-masses = 1d0
0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
1d0 0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
1d0 0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
Normalization will be done internally by the program
More information can be found under the keyword
binary-wz-default
(binary wurtzite parameters) under the section
Keywords.
|