|    |  | nextnano3 - Tutorialnext generation 3D nano device simulator1D Tutorialk.p dispersion in bulk GaAs (strained / unstrained)Author:
Stefan Birner If you want to obtain the input files that are used within this tutorial, please 
check if you can find them in the installation directory.If you cannot find them, please submit a
Support Ticket.
 
 -> bulk_kp_dispersion_GaAs_nn3.in          
/ *_nnp.in          - input file for nextnano3 
/ nextnano++ softwareinput file for nextnano3-> bulk_kp_dispersion_GaAs_nn3_3D.in                           
-
input file for nextnano3 
/ nextnano++ software-> bulk_kp_dispersion_GaAs_nn3_strained.in / *_nnp_strained.in -
 
 Band structure of bulk GaAs
  We want to calculate the dispersion E(k) from |k|=0 nm-1 to |k|=1.0 
	nm-1 along the 
  following directions in k space:- [000] to [001]
 - [000] to [011]
 We compare 6-band and 
  8-band k.p theory results.
We calculate E(k) for bulk GaAs at a temperature of 300 K.   Bulk dispersion along [001] and along [011]
  
  $output-kp-datain units ofdestination-directory    = kp/
 
 bulk-kp-dispersion       = yes
 grid-position            = 5d0                      !
 [nm]k-direction 
  and range for dispersion plot!----------------------------------------
 ! Dispersion along [011] direction
 ! Dispersion along [001] direction
 ! maximum |k| vector = 1.0 [1/nm]
 !----------------------------------------
 k-direction-from-k-point =
  0d0  0.7071d0  0.7071d0  !
 [1/nm]k-direction 
  and range for dispersion plotk-direction-to-k-point   =
  0d0  0d0       1.0d0      !
 [1/nm]The dispersion is calculated from the k point '
 !
k-direction-from-k-point' 
	to Gamma, and then from the Gamma point to 'k-direction-to-k-point'.number of k points to be calculated (resolution)
 number-of-k-points       = 100                       !
  shift-holes-to-zero      = yes                      
   ! 'yes' or 'no'$end_output-kp-data
We calculate the pure bulk dispersion at grid-position=5d0, 
  i.e. for the material located at the grid point at 5 nm. In our case this is 
  GaAs but it could be any strained alloy. In the latter case, the k.p 
  Bir-Pikus strain Hamiltonian will be diagonalized.The grid point at
  grid-position must be located inside a quantum cluster.
 shift-holes-to-zero = yes forces the 
  top of the valence band to be located at 0 eV.How often the bulk k.p Hamiltonian should be solved can be specified 
  via
  number-of-k-points. To increase the resolution, just increase 
  this number.We use two direction is k space, i.e. from [000] to [001] and from [000] to [011]. 
	In the latter case the maximum value 
  of |k| is SQRT(0.7071² + 0.7071²) = 1.0.Note that for values of |k| larger than 1.0 nm
 -1, 
	k.p theory might not 
  be a good 
  approximation any more.Start the calculation.The results can be found in
  kp_bulk/bulk_8x8kp_dispersion_as_in_inputfile_kxkykz_000_kxkykz.dat.   Step 3: Plotting E(k)
  Here we visualize the results. The final figure will look like this:
  The split-off energy of 0.341 eV is identical to the split-off energy as 
  defined in the database:
 
   6x6-kp-parameters = ... 
	0.341d0 !  [eV]
If one zooms into the holes and compares 6-band vs. 8-band k.p, one can 
  see that 6-band and 8-band coincide for |k| < 1.0 nm-1 for the heavy and light hole but 
  differ for the split-off hole at larger |k| values.
  To switch between 6-band and 8-band k.p one only has to change this entry in 
  the input file:
 
 
  $quantum-model-holesfor 8-band k.p...
 model-name = 8x8kp !
for 6-band k.p=
  6x6kp !
   8-band k.p vs. effective-mass approximation
  Now we want to compare the 8-band  k.p dispersion with the 
  effective-mass approximation. The effective mass approximation is a simple 
  parabolic dispersion which is isotropic (i.e. no dependence on the k 
  vector direction). For low values of k (|k| < 0.4 nm-1) it is in good agreement 
  with k.p theory.The output data can be find here:
 
  kp_bulk/bulk_sg_dispersion.dat.
 
    Band structure of strained GaAs
  Now we perform these calculations again for GaAs that is strained 
  with respect to In0.2Ga0.8As. The InGaAs lattice 
  constant is larger than the GaAs one, thus GaAs is strained tensilely.The changes that we have to make in the input file are the following:
 
 
  $simulation-flow-control...
 strain-calculation  = homogeneous-strain
 $end_simulation-flow-control
 
 
  $domain-coordinatesAs substrate material we take In0.2Ga0.8As and 
  assume that GaAs is strained pseudomorphically (...
 pseudomorphic-on    = In(x)Ga(1-x)As
 alloy-concentration = 0.20d0
 $end_domain-coordinates
 
 
homogeneous-strain) 
  with respect to this substrate, i.e. GaAs is subject to a biaxial strain.Due to the positive hydrostatic strain (i.e. increase in volume or 
  negative hydrostatic pressure) we obtain a reduced band gap with respect to 
  the unstrained GaAs.Furthermore, the degeneracy of the heavy and light hole at k=0 is 
  lifted.
 Now, the anisotropy of the holes along the different directions [001] and 
  [011] is very pronounced. There is even a band anti-crossing along [001]. 
  (Actually, the anti-crossing looks like a "crossing" of the bands but if one 
  zooms into it (not shown in this tutorial), one can easily see it.)
 Note: If biaxial strain is present, the directions along x, y or z are not 
	equivalent any more. This means that the dispersion is also different in 
	these directions ([100], [010], [001]).
 
 
 
 If one zooms into the holes and compares 6-band vs. 8-band k.p, one can 
  see that the agreement between heavy and light holes is not as good as in the 
  unstrained case where 6-band and 8-band k.p lead to almost identical 
  dispersions.
 
  Note that in the strained case, the effective-mass approximation is very poor.
   Analysis of eigenvectors(preliminary) Using schroedinger-kp-basis = Voon-Willatzen--Bastard--Foreman
(box-integration) one obtains the following output for the eigenvectors 
at the Gamma point, k = (kx,ky,kz) 
= 0. The square of the spinor is contained in this file: bulk_8x8kp_dispersion_eigenvectors_squared_000.datExample: The
 X_up component contains a complex number. Here, 
we output the square of X_up. This file then gives us information 
on the strength of the coupling of the mixed states.This file is easier to analyze then the file containing the complex numbers (
 bulk_8x8kp_dispersion_eigenvectors_000.dat).  eigenvalue  S+     S-     
HH     
LH     LH     LH     SO     
SO1           0      
1.0    0      0      
0      0      0      
0
 2           1.0    
0      0      0      
0      0      0      
0
 3           0      
0      0      1.0    
0      0      0      
0
 4           0      
0      0      0      
1.0    0      0      
0
 5           0      
0      0      0      
0      1.0    0      
0
 6           0      
0      1.0    0      
0      0      0      
0
 7           0      
0      0      0      
0      0      0      
1.0
 8           0      
0      0      0      
0      0      1.0    
0
  eigenvalue  S+          
S-          X+          
Y+          Z+          
X-          Y-          
Z-1           
1.0
        0           0           
0           0           
0           0           
0
 2          
0           
1.0         
0           0           
0           0           
0           0
 3           0           
0           0           
0           0.5         
0.5         0           
0
 4           0           
0           0           
0           0.166       
0.166       0.666       
0
 5           0           
0           0.5         
0           0           
0           0           
0.5
 6           0           
0           0.166            0.666       
0           0           
0                0.166
 7           
0           0           
0           0        
  0.333       0.333       
0.333       0
 8           
0           0          
0.333       0.333  
    0           
0           0         
 0.333
 
 
 +: spin up, -: spin down
 The electron eigenstates are 2-fold degenerate, 
i.e. have the same energy, and are decoupled from the holes. The hole eigenstates are 4-fold (heavy and light holes) and 2-fold degenerate 
(split-off holes). 
	3: |3/2, 3/2>   hh  spin up       1/SQRT(2) | ( X + iY ) up     >
	4: |3/2, 1/2>   lh               1/SQRT(6) | ( X + iY ) down >   -   SQRT(2/3) | Z up   >
 5: |3/2,-1/2>   lh             -1/SQRT(6) | ( X - iY ) up   >  -  SQRT(2/3) | Z down >
 6: |3/2,-3/2>   hh  spin down     1/SQRT(2) | ( X - iY ) down >
 7: |1/2, 1/2>   s/o split        1/SQRT(3) | ( X + iY ) down >   +   1/SQRT(3) | Z up   >
 8: |1/2,-1/2>   s/o split      -1/SQRT(3) | ( X - iY ) up   >  +   1/SQRT(3) | Z down >
up: spin up, down: spin down1/SQRT(2) = 0.707  ==> 
	1/SQRT(2)^2 = 0.5
 1/SQRT(3) = 0.577  ==> 
	1/SQRT(3)^2 = 0.333
 1/SQRT(6) = 0.408  ==> 
	1/SQRT(6)^2 = 0.166
 |