| Quantum model electrons!------------------------------------------------------------------!Note:$quantum-model-electrons                     
           
optional  !
 model-number                        
   integer       
  required  !
 model-name                        
     character    
  required  !
 cluster-numbers                   
     integer_array   required  !
 conduction-band-numbers           
     integer_array   required  !
 separation-model                    
   character       
optional  !
 number-of-eigenvalues-per-band         
integer_array   required  !
 occupy-exactly-min-eigenvalues-per-band double_array  
  optional  !
 double_arrayand 
not integer_array  to allow for partial occupation.Note:occupy-exactly-max-eigenvalues-per-band double_array  
  optional  !
 double_arrayand 
not integer_array  to allow for partial occupation.maximum-energy-for-eigenstates    
     double_array  
  optional  !
 quantization-along-axes            
    integer_array   
optional  !
 boundary-condition-100            
     character    
  optional  !
 boundary-condition-010            
     character     
 optional  !
 boundary-condition-001            
     character     
 optional  !
 method-of-brillouin-zone-integration 
   character
      optional  ! 1D/2D 
(k.p only)
 k-range-determination-method         
   character
      optional  ! 
1D/2D (k.p only)
 k-range                                
double          optional  ! 
1D/2D (k.p only)
 num-kp-parallel                     
   integer       
  optional  ! 1D/2D (k.p only)
 num-ks-100                         
    integer       
 optional  ! superlattice only
 num-ks-010                             
integer        
 optional  ! superlattice only
 num-ks-001                             
integer       
  optional  ! superlattice only
 $end_quantum-model-electrons                     
      
 optional  !
 !------------------------------------------------------------------!
   
  
    |  | quantum-model- holes
 | valence-band- numbers
 |  | quantum-model- electrons
 | conduction-band- numbers
 |  
    |  | classical (=not specified)
 | any combination |  | classical (=not specified)
 | any combination |  
    | effective-mass | effective-mass | any combination |  | effective-mass | any combination |  
    | 6x6kp | 6x6kp | 1 2 3 |  | doesn't make sense | - |  
    | 8x8kp | 8x8kp | 1 2 3 |  | 8x8kp(hole mustn't be
 6x6kpin this case) | 1 |  If electrons are 8x8kp, holes cannot be 6x6kp. 
(Can 
they be effective-mass in this case? 
Probably this is allowed.)   Syntaxmodel-number = 1
   model-name   = 
8x8kp(for= 
effective-mass
 8x8kp
conduction-band-number1 only) or
effective-mass
   cluster-numbers =
1cluster numbers to which this model applies
   conduction-band-numbers =
1to select bands (minima) handled in Schrödinger 
equation
- 8x8kp:
 can be
  1 (only Gamma band, this is the only option for
8x8kp)- effective mass:
 can be
 1     (only Gamma band)(only L 
band)2
(only X 
band)3
(Gamma, L and X band for1 2
 1 3
 2 3
 1 2 3
effective-mass)
   separation-model = eigenvalue
  !  -> specify number-of-eigenvalues-per-bandspecify= energy     
 !  ->
 maximum-energy-for-eigenstatesOnly localized states are 
considered for the quantum mechanical density.= edge-model  
!   ->
To determine separation between classical and 
quantum mechanical density
('eigenvalue','energy','edge-model').More information ...
(It should be checked whether
  edge-model
 works for k.p.)
   number-of-eigenvalues-per-band = 
3     !
If only one band is specified, then calculate 3 eigenvalues for this 
band.
  = 
6 3   !
If two bands are specified, then calculate 6 eigenvalues for the first 
band
                              
         
! 
and 3 eigenvalues for the second band.
                             
  = 
3 3 3 !
If Gamma, L and X bands are specified, then calculate 3 eigenvalues for 
each.Here one has to specify how many eigenstates have to be calculated in each 
conduction band 
minimum. This is also relevant for the quantum mechanical density unless
 maximum-energy-for-eigenstates is specified in combination with separation-model = 
energy. However, in this case also number-of-eigenvalues-per-band
has to be present in order to determine the maximum number of eigenstates 
to be calculated (although not all contribute to the density).
   maximum-energy-for-eigenstates =
0.5d0             ! [eV] 
If one conduction band is specified.
                               
 =
0.5d0 0.5d0       ! [eV] 
If two conduction bands are specified.
                               
 =
0.5d0 0.5d0 0.5d0 ! [eV] 
If three conduction bands are specified.Upper limit for energy of bound states.
 Calculate eigenvalues up to this energy (relative to bulk band 
edge).
 Use continuum model above this energy (relative to bulk band edge).
 Relevant for specifier
  separation-model = 
energy.For
  separation-model = eigenvalue
 this specifier is ignored.
   quantization-along-axes        
= 1 1 1  ! 3DZeros and ones: to select quantization direction (1D) / plane (2D) / 
volume (3D).= 
1 1 0  ! 2D
 = 
1 0 1  ! 2D
 = 
0 1 1  ! 2D
 = 
0 0 1  ! 1D
 = 
0 1 0  ! 1D
 = 
1 0 0  ! 1D
 
At present the entries must be identical to specifier
  orientation in keyword $simulation-dimension.If not present, the values of specifier
  orientation in keyword $simulation-dimensionare used.In 3D input like '
 0 1 1'  is 
not possible so far.Currently no features are attributed to this specifier. A possible extension for 
the future would be to use a 2D simulation where only a 1D quantization is used 
or a 3D simulation with a 1D quantization direction or a 2D quantized plane.
   boundary-condition-100  = 
Neumann       
  !
                         = 
Dirichlet       
!(for superlattice)= 
periodic         
!
boundary-condition-010  = 
[ as above ][ as above ]boundary-condition-001  =
"Boundary conditions for [100]" means boundary conditions for 
Schrödinger equation in x-direction of simulation system and similar for [010 
and [001].
 
Default is
 
Neumann.
 For the wavefunction at the boundary it holds: 
	Neumann: d 
	psi(zb) / d z = 0 where zb means z coordinate at the 
	boundary of the quantum clusterDirichlet: 
	psi(zb) = 0periodic: psi(zb,right) 
	= psi(zb,left) Remarks:It is possible to specify something like this:
 
    boundary-condition-100  = 
periodicThis makes sense if one has a quantum well 
extending over the whole (x,y) plane and which is perpendicular to the z 
direction.boundary-condition-010  = 
periodic
 boundary-condition-001  
= 
Dirichlet
 
 Restrictions:
 If one specifies
  periodic boundary conditions, the quantum cluster must extend over the whole device in 
that direction.   Occupy a fixed number of eigenstates for each band occupy-exactly-min-eigenvalues-per-band = 
0d0 0d0 0d0 ! Note: double_arrayand 
not integer_array  to allow for partial occupation.Note:occupy-exactly-max-eigenvalues-per-band = 1d0 1d0 
1d0 !
 double_arrayand 
not integer_array  to allow for partial occupation.
 A negative number indicates that the default should be used for this 
particular band. Sometimes one does not want to take into account the (automatically 
calculated) temperature dependent occupation of the eigenstates (energy levels) 
via the Fermi-Dirac distribution function. If any of the entries in occupy-exactly-max-eigenvalues-per-band is nonzero (and positive), then the number of occupied and empty eigenstates is 
set by the user,e.g. if one wants to have exactly 2 electrons in a quantum dot.
 It is not necessary to specify:
  occupy-exactly-min-eigenvalues-per-band = ...By default
 occupy-exactly-min-eigenvalues-per-band is assumed to be zero. Examples (Note: Usually each eigenstate is assumed to be two-fold spin 
degenerate.)  occupy-exactly-max-eigenvalues-per-band = 
0.5d0 ! Occupy the ground state with 1 
electron   (occupancy of two-fold spin degenerate ground state = 0.5).
  occupy-exactly-max-eigenvalues-per-band = 
1.0d0 ! Occupy the ground state with 2 
electrons  (occupancy of two-fold spin degenerate ground state = 1.0).
  occupy-exactly-max-eigenvalues-per-band = 
1.5d0 ! Occupy the ground state with 2 
electrons   (occupancy of two-fold spin degenerate ground state = 
1.0).
                                                  ! Occupy the 2nd eigenstate with 1 electron  (occupancy of 
two-fold spin degenerate 2nd state = 0.5).
  occupy-exactly-max-eigenvalues-per-band = 
0.7d0 ! Occupy the ground state with 
0.7 electrons (occupancy of two-fold spin degenerate ground state = 0.7).
   One can also specify a range, e.g. leave the ground 
state empty and occupy only the second eigenstate with 1 electron.  occupy-exactly-min-eigenvalues-per-band = 
1.0d0 ! Occupy the ground state with 
0.0 electrons (occupancy of two-fold spin degenerate ground state = 0.0).
  occupy-exactly-max-eigenvalues-per-band = 
1.5d0 ! Occupy the 2nd 
eigenstate with 1 electron   (occupancy of two-fold spin degenerate 2nd 
state = 0.5).
   Results One can also specify a partial occupation, e.g. having 
1.4 electrons in the ground state and occupy the second, third and fourth 
eigenstate with two electrons each.  occupy-exactly-min-eigenvalues-per-band = 
0.3d0 ! Occupy the ground state with 
0.6 electrons (occupancy of two-fold spin degenerate ground state = 0.3).
  occupy-exactly-max-eigenvalues-per-band = 
4.0d0 ! Occupy the 2nd , 3rd 
and 4th eigenstate with 2 electrons each  (occupancy of each of 
these two-fold spin degenerate excited states = 1.0).
 
densities\subband3D_el_qc001_sg001_deg001_integrated.dat
   num_ev   
IntegratedSublevelDensity[electrons] ! (including spin)1.4 electrons in 1st 
eigenstate  [ = (11       1.4000000E+00   !
-0.3d0) 
* 2 = 0.7 * 2 = 1.4 ]2.0 electrons in 2nd 
eigenstate2       2.0000000E+00   !
2.0 electrons in 3rd 
eigenstate3       2.0000000E+00   !
2.0 electrons in 4th 
eigenstate4       2.0000000E+00   !
0.0 electrons in 5th 
eigenstate5       0.0000000E+00   !
    ...
   Note: This feature is very artificial.So the user should use it with care and should check if it makes sense from a 
physics points of view for the user's particular application in mind.
 Convergence of the self-consistent Schrödinger-Poisson equation might be 
difficult if the specified number of electrons does not fit to the symmetry of 
the device.
 This feature currently works only for the single-band case (effective-mass).     k.p only
  method-of-brillouin-zone-integration = 
  special-axis        
  ! 1D/2DOnly for [0001] quantization direction in 
wurtzite or= simple-integration  
  ! 1D
 = gen-dos             
   ! 1D
 'special-axis'
 
                           
  for isotropic energy dispersion E(k||) which 
  is in general not the case or
 
                           
  for 2D simulations.Discretization of 2D Brillouin zone (only applicable to a 1D 
  simulation).'simple-integration'
Evaluation of the density by integration over the density of states (DOS).'gen-dos'
(not implemented yet for 2D simulations)
Only necessary for 1D and 2D k.p simulations.
More 
information ...
   k-range-determination-method = bulk-dispersion-analysis  ! 1D/2D(Units: [1/Angstrom])= k-max-input               ! 
1D/2D
 
 k-range                      
= 1.0d0                  
    ! 1D/2D
is required ifk-range
 k-range-determination-method = 
  k-max-input.This also works for 2D (kz) but does not make sense 
for 3D.
 1D:
  k-range specifies the extenstion of 
	the k|| = (kx,ky) space, i.e. here a 
	rectangle in the interval [-k-range , k-range] is specified 
	along the kx and ky directions.2D:
  k-range specifies the extenstion of 
	the k|| = (kz) space, i.e. here a line in the interval 
	[-k-range , k-range] is specified along the k|| direction.More information ...
   num-kp-parallel =
100For kx=ky=0 only; if no k|| should be 
considered.=
1    !
Total number of k|| points for Brillouin zone discretization.
Only necessary for 1D
	(kx,ky) and 2D 
	(kz) 
  k.p simulations and optical absorption.
 This also works for 2D (kz) but does not make sense 
for 3D.
 1D: It always refers to the total number of k|| 
points in the whole 2D Brillouin zone:
 num-kp-parallel =
	(2 * Nkx + 1) * (2 * Nky + 1)2D: It always refers to the total number of kz 
points in the whole 1D Brillouin zone.
 More information ...
   Superlattice only
  num-ks-100 = Number of k points in superlattice direction 
  x.
 num-ks-010 = Number of k points in superlattice direction 
  y.
 num-ks-001 = Number of k points in superlattice direction 
  z.
   To doImplement feature where the user specifies either 
	number of eigenvalues above conduction band edge orenergy range above conduction band edge where to look for the relevant 
	eigenvalues. Such a feature might depend on the eigenvalue solver used.   Please also refer to the database section of 
$quantum-model-electrons. |