

Non-equilibrium quantum transport theory for quantum cascade lasers

T. Kubis¹, C. Yeh², S. Birner¹, P.Vogl¹

Walter Schottky Institut, TU München, 85748 Garching, Germany University of Florida, 32611 Gainesville, USA

Motivation

- Realistic prediction of electronic transport in QCLs, treating quantum mechanical coherence and all relevant scattering mechanisms on an equal footing
- Fully self-consistent implementation of NEGF (Non-equilibrium Green function theory) to QCL

Open questions in transport through QCL

- Balance between coherence and dephasing
- Relevance of coherent tunneling

This work

- Fully self-consistent implementation of NEGF:
- Self consistent solution of $G^R \leftrightarrow \Sigma^R \leftrightarrow G^s \leftrightarrow \Sigma^s$
- Self-consistent Born approximation
- Momentum-dependent self-energies
- Spatially off-diagonal self-energies
- Acoustic phonon scattering
- Optical phonon scattering
- Impurity scattering
- Interface roughness scattering
- Electron-electron scattering (Hartree)
- No fitting parameters

Study of active region of realistic QCL at 100K
 (Exp: Williams et al. APL 82, 1015 (2003))

- NEGF ignoring interface roughness
 - ballistic NEGF
- Experiment (Callebaut et al. APL 83, 207 (2003))
- Interface roughness
 - facilitates quantum mechanical tunneling due to momentum relaxation and delocalizes states
 increases current
 - broadens energy states ⇒ reduces peak-to-valley ratio

Results

- Quantum mechanical effects play dominant role:
 - Tunneling across 3 and more quantum wells
 - Interface roughness increases current, but reduces gain
 - Occupation inversion arises mainly from coherent tunneling and not from incoherent scattering

Energy resolved Local Density of States

- Alignment leads to coherent
 - filling of upper laser state
 - depletion of lower laser state
 This is the basis mechanism
- This is the basis mechanism leading to occupation inversion

States in resonance get coherently filled/emptied

Energy resolved density

V = 65 mV

 $n(z,E) = \int dk \ k \ Im[G^{<}(z,z,k,E)]$ $n(z,E) [10^{18} \ cm^{-3} eV^{-1}]$.02 .2 2

Phonon emission

- empties central well
- assists occupation inversion

Occupation inversion assisted by emission of polar optical phonons

Absorption coefficient α at V=65mV

exp. and optimized design

Original design
Optimized design

Optimized design

The state of the

Absorption coefficient α

- Interface roughness reduces gain significantly
- Design optimization helps to increase gain